

Ruedas libres

Antirretrocesos • Embragues por adelantamiento • Ruedas libres de avance

Índice

Introducción en la tecnología de las ruedas l	ibres						Página
Diseño y funcionamiento de las ruedas libres							4
Aplicaciones de las ruedas libres							4
<u>'</u>							5
Campos de aplicación de las ruedas libres							6
Ejecuciones de las ruedas libres							8
Ruedas libres con elementos de forma o rodillos de bloqueo							10
Tipos con elevada duración de vida							12
Determinación del par de selección							14
Selección de la rueda libre				-			15
Ruedas libres completas	Antirretroceso	Utilización Embrague adelantamiento	Ruedas Libres de avance	Soporte propio	Par nominal hasta Nm	Diámetro hasta mm	Página
para uniones atornilladas en la parte frontal							
FB con elementos de bloqueo en cuatro diferentes tipos			•		160 000	300	16
FR en pulgadas con elem. de bloqueo, disponible en cuatro tipos					37000	180	18
FKh con despegue hidrodinámico					14000	95	20
con brida de amarre					<u>'</u>	'	
FBF con elementos de bloqueo en cuatro diferentes tipos			•		160 000	300	22
FGR R A1A2 con rodillos de bloqueo			0		68 000	150	24
FGR R A2A7 con rodillos de bloqueo			0	0	68 000	150	26
para unión de chaveta en el aro exterior		_					
BM con rodillos de bloqueo o despegue X	0			0	57 500	150	28
FGRN R A5A6 con rodillos de bloqueo					6800	80	30
con palanca							
BA con rodillos de bloqueo o despegue X	0			0	57500	150	32
BC con rodillos de bloqueo o despegue X					57500	150	34
FGR R A3A4 con rodillos de bloqueo					68 000	150	36
FGR R A2A3 con rodillos de bloqueo					68 000	150	38
FRHD en pulgadas con elementos de bloqueo					1215000	533	40
FA con elementos de bloqueo y provista de grasa					2500	85	42
FAV con rodillos de bloqueo y provista de grasa					2500	80	44
con acoplamiento de ejes							
FBE para desviaciones menores, con elementos de bloqueo				0	160 000	300	46
FBL para desviaciones elevadas, con elementos de bloqueo				0	8000	140	48
Ruedas libres con carcasa		Utilización		Soporte	Par nominal	Eje	Página
nueuas libres coli carcasa	Antirretroceso	Embrague adelantamiento	Ruedas Libres de avance	propio	hasta Nm	hasta mm	rugina
para colocación estacionaria							
FH con despegue hidrodinámico de los rodillos					40 600	129	50
FCBM para unidades de horno rotatorio					750	50	54
Ruedas libres con base	Antirretroceso	Utilización Embrague adelantamiento	Ruedas Libres de avance	Soporte propio	Par nominal hasta Nm	Diámetro hasta mm	Página
para completar con piezas de conexión							
FBO con elementos de bloqueo en cuatro diferentes tipos	0		•	0	160 000	300	56
FGR R con rodillos de bloqueo					68 000	150	58

Ruedas libres externas		Utilización		Soporte propio	Par nominal hasta	Diámetro hasta	Página
	Antirretroceso	Embrague adelantamiento	Ruedas Libres de avance	propio	Nm	mm	
para uniones atornilladas en la parte frontal							
FXM con despegue X					1230000	560	6
FON con elementos de bloqueo en tres diferentes tipos	0		0		25 000	155	6
para uniones atornilladas en la parte frontal, con limitación de	par						
FXRW con despegue X	0				107000	240	6
FXRU con despegue X con dispositivo de desbloqueo	0				107000	240	6
FXRV con despegue X	0				100 000	300	6
FXRT con despegue X con dispositivo de desbloqueo	0				53 000	240	6
Ruedas libres incorporadas		Utilización Embrague	Ruedas Libres	Soporte propio	Par nominal hasta	Diámetro hasta	Página
	Antirretroceso	adelantamiento	Ruedas Libres de avance		Nm	mm	
para unión por ajuste a presión en el aro exterior				T			
FXN con despegue X	0	0			20 500	130	74
FCN R con rodillos de bloqueo	0	0	•		840	80	78
FDN con elementos de bloqueo	0		0		2400	80	8
FD con elementos de bloqueo			0		2400	105	82
ZZ con elementos de bloqueo y soporte propio	0		0		325	40	84
ZZ 2RS con elem. bloq., soporte propio y obturación	0		0		325	40	8
ZZ P2RS con elem. bloq., soporte propio y obturación	0		0		325	40	8
ZZ P con elementos de bloqueo y soporte propio			•		325	40	8
para unión de chaveta en el aro exterior							
ZZ PP con elementos de bloqueo y soporte propio					325	40	89
FSN con rodillos de bloqueo			•		3 000	80	90
FN con rodillos de bloqueo			0		3 000	60	92
FNR con rodillos de bloqueo y rodamiento			•		3 000	60	94
Jaulas de rueda libre		Utilización		Soporte	Par nominal hasta		Página
	Antirretroceso	Embrague adelantamiento	Ruedas Libres de avance	propio	Nm		
para completar con aro interior y aro exterior	•	'		·	'	'	
SF con elementos de bloqueo, disponible en tres tipos	0		0		93 000		96
SF P con elementos de bloqueo, para grandes saltos	0		0		5800		98
BWX en pulgadas, con elementos de bloqueo	0	0	0		4900		10
Irreversibles		Utilización		Soporte propio	Par nominal hasta	Diámetro hasta	Página
	Antirretroceso	Embrague adelantamiento	Ruedas Libres de avance		Nm	mm	
Antirretroceso bidireccional, para completar con piezas de co	nexión						
Irreversible IR con rodillos de bloqueo	0				100	35	10:
Profundización en la tecnología de las rued	as libres						Página
Ejemplos de aplicación y ruedas libres especiales							10-
Consejos técnicos							10
Questionnaires							Página
de antirretrocesos RINGSPANN							11
de embragues por adelantamiento RINGSPANN							11:
							114
de ruedas de avance RINGSPANN						1	1.11

Los pares máximos transmisibles son el doble de los pares nominales indicados. Edición 02/2018 – Nos reservamos el derecho de introducir modificaciones técnicas.

Diseño y funcionamiento de las ruedas libres

Las ruedas libres son elementos de máquinas con unas características especiales:

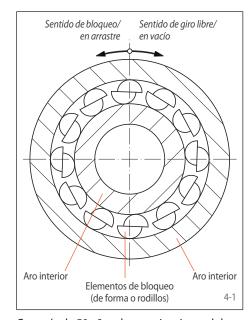
- En uno de los sentidos de giro no existe una unión entre los aros interior y exterior, y la rueda libre funciona en vacío.
- En el otro sentido existe una unión entre los aros interior y exterior; la rueda libre funciona en arrastre, pudiendo transmitir un par elevado en dicho sentido.

Así, en la rueda libre representada en la fig. 1, el aro exterior puede girar libremente en el sentido de las agujas del reloj (funcionamiento en vacío) con el aro interior inmóvil. No obstante, si el aro exterior gira en dirección contraria, existe una unión entre los aros exterior e interior, arrastrando el aro interior (funcionamiento de arrastre).

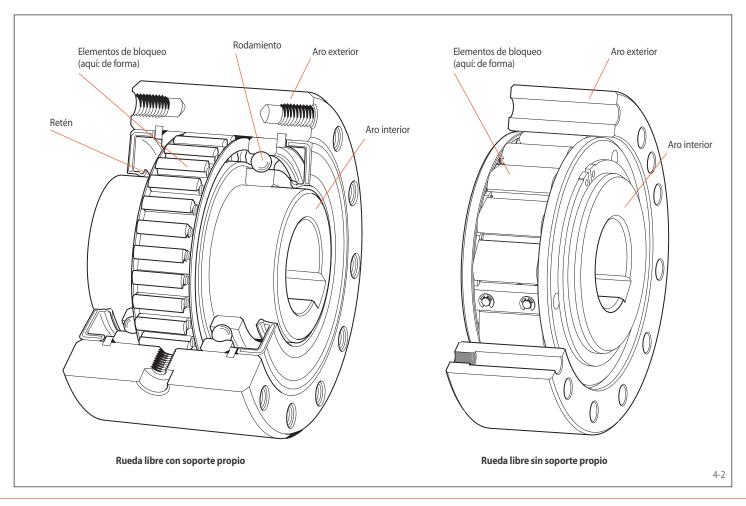
Las ruedas libres se utilizan como:

- Antirretrocesos
- Embragues por adelantamiento
- Ruedas libres de avance

Las ruedas libres pueden ejercer estas funciones automáticamente en las máquinas más variadas, sin necesidad de dispositivos de accionamiento mecánico o hidráulico como en embragues de cambio o frenos.


Las ruedas libres se componen de un aro exterior y un aro interior, entre los cuales están dispuestos los elementos de bloqueo. Los elementos de bloqueo pueden ser tanto de forma como rodillos. Se distingue entre:

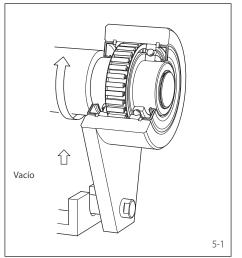
- · ruedas libres con soporte propio y
- ruedas libres sin soporte propio.


Para el funcionamiento de una rueda libre es necesaria la alineación concéntrica de los aros exterior e interior. En las ruedas libres sin soporte propio, la alineación concéntrica debe proveerse por parte del cliente.

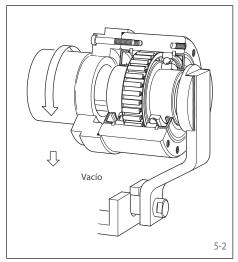
Las ruedas libres de RINGSPANN son un elemento de construcción imprescindible en la maquinaria y la construcción de instalaciones, así como en la tecnología aeronáutica. Muchas de estas construcciones sólo pueden realizarse económicamente utilizando ruedas libres. La rueda libre como elemento de accionamiento automático se prefiere ante las soluciones convencionales por aportar las siguientes ventajas decisivas:

- · seguridad,
- · rentabilidad y
- · mayor grado de automatización.

Con más de 50 años de experiencia en el desarrollo, la producción y la venta de ruedas libres, RINGSPANN dispone actualmente del programa de ruedas libres más amplio. Su red mundial de filiales y distribuidores facilita el mejor servicio posible y personalizado allá donde se necesite. Las plantas de montaje y producción en diferentes países garantizan la entrega rápida y fiable.


Aplicaciones de las ruedas libres

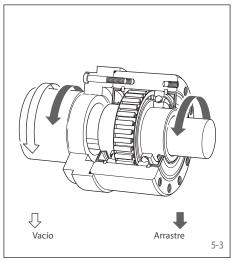
RINGSPANN®


Antirretroceso

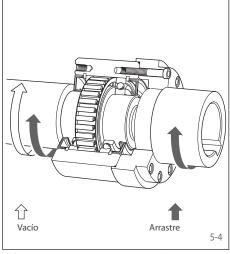
Las ruedas libres se utilizan como antirretroceso siempre que se quiera impedir el giro contrario al de servicio. En muchas máquinas e instalaciones es imprescindible, por seguridad o buen funcionamiento, que el sentido de giro sea siempre el determinado previamente. Así, para el servicio de instalaciones de transporte existen prescripciones legales que exigen un dispositivo de seguridad mecánico.

El estado de funcionamiento normal del antirretroceso es el funcionamiento en vacío; el bloqueo (transmisión de par) se realiza a cero revoluciones. El enganche inmediato de los elementos de bloqueo garantiza la mayor seguridad.

Habitualmente, se utilizan antirretrocesos en los que el aro interior gira libremente, mientras se bloquea el giro contrario mediante el aro exterior fijado (fig. 5-1).

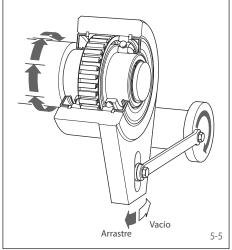


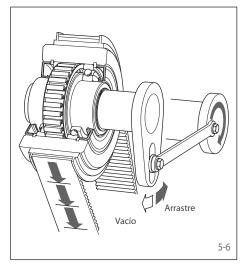
En la actualidad, los antirretrocesos más sofisticados en cuanto a su diseño, en los que el aro exterior gira libremente y el bloqueo se efectúa mediante el aro interior fijado, sólo se utilizan en casos aislados (fig. 5-2).


Embragues por adelantamiento

El embrague por adelantamiento desconecta las máquinas o piezas de máquinas e interrumpe automáticamente la interconexión entre las mismas, cuando la parte accionada del embrague por adelantamiento gire a mayor velocidad que la parte motriz, pudiendo, en muchas ocasiones, sustituir un embrague de cambio de construcción más compleja.

El embrague por adelantamiento engancha en arrastre (transmisión de par), mientras que en vacío la transmisión de par entre los aros interior y exterior está interrumpida. En el funcionamiento de arrastre, el número de revoluciones de los aros interior y exterior es igual, mientras que en el funcionamiento en vacío difieren.


La fig. 5-3 muestra un embrague por adelantamiento, en el cual en arrastre la fuerza se transmite del aro interior al aro exterior, y en vacío el aro exterior adelanta al interior con un mayor número de revoluciones.


La fig. 5-4 muestra un embrague por adelantamiento, en el cual en arrastre la fuerza se transmite del aro exterior al aro interior, y en vacío el aro interior, con mayor número de revoluciones, adelanta al exterior.

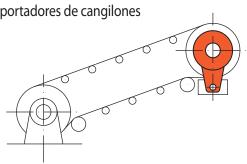
Ruedas libres de avance

Las ruedas libres de avance transforman un movimiento de vaivén en un movimiento de giro paso a paso (avance), trabajando las de RINGSPANN con precisión y sin ruidos y facilitando el ajuste continuo del recorrido de avance.

La fig. 5-5 muestra una rueda libre de avance, en la que el aro exterior realiza el movimiento de vaivén y el interior el movimiento de avance paso a paso.

La fig. 5-6 muestra una rueda libre de avance, en la que el aro interior realiza el movimiento de vaivén y el exterior el movimiento de avance paso a paso.

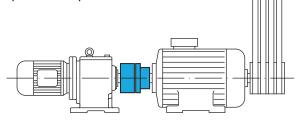
Campos de aplicación de las ruedas libres

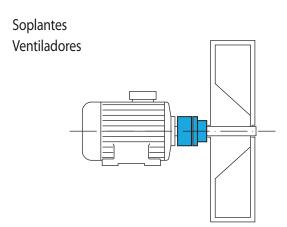

Campos de aplicación de los antirretrocesos

Cajas de cambio Motores eléctricos Motorreductores

El antirretroceso previene la rotación inversa del motor de un equipo transportador si falla la red eléctrica o al parar el motor de accionamiento de los equipos transportadores éstos retrocedan.

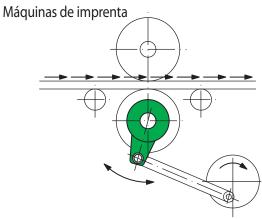
Cintas transportadoras inclinadas **Elevadores**


Transportadores de cangilones


Asimismo, el antirretroceso impide que, en caso de fallo de la red eléctrica o con el motor parado, el material transportado retroceda.

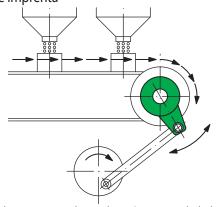
Campos de aplicación de los embragues por adelantamiento

Máquinas textiles Máquinas de imprenta


En las máquinas textiles y de imprenta, el embraque por adelantamiento desconecta el accionamiento de marcha ultralenta, que es necesario para el ajuste, del accionamiento principal.

Al parar las soplantes o ventiladores, el embrague por adelantamiento impide que la masa de inercia de los mismos arrastre al accionamiento.

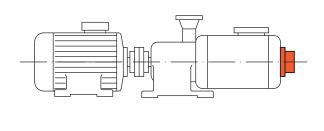
Campos de aplicación de las ruedas libres de avance


Máquinas textiles

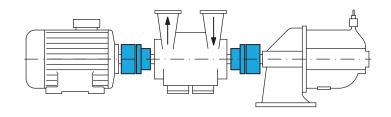
En las máquinas textiles y de imprenta, la rueda libre de avance realiza avances de transporte paso a paso.

Máquinas textiles

Máquinas de imprenta


La rueda libre de avance se utiliza en las máquinas embaladoras y en las instalaciones envasadoras para realizar un avance paso a paso.

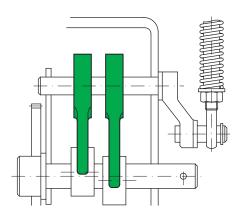
Soplantes Ventiladores


El antirretroceso impide que el medio transportado retroceda bajo su propia carga, una vez se haya parado el motor.

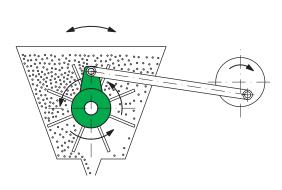
Bombas Compresores

El antirretroceso impide el arranque en el sentido de giro erróneo.

Bombas Generadores


En los accionamientos múltiples, el embrague por adelantamiento desacopla automáticamente el accionamiento que no funciona o que funciona a revoluciones bajas.

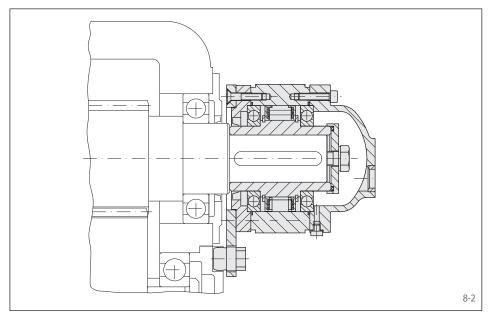
Caminos de rodillos


Mediante el embrague por adelantamiento el material transportado se mueve por el camino de rodillos a mayor velocidad que la que correspondiese al número de revoluciones del accionamiento.

Interruptores de alta tensión

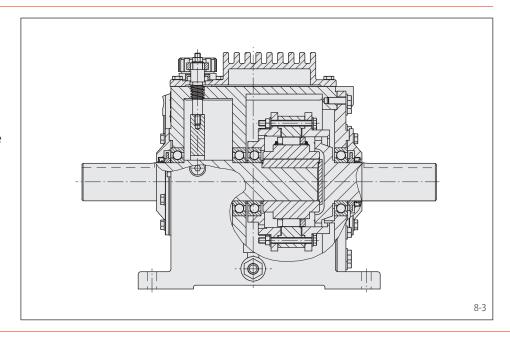
En los interruptores de alta tensión, para tensar un muelle se utiliza una rueda libre de avance en vez de un engranaje reductor.

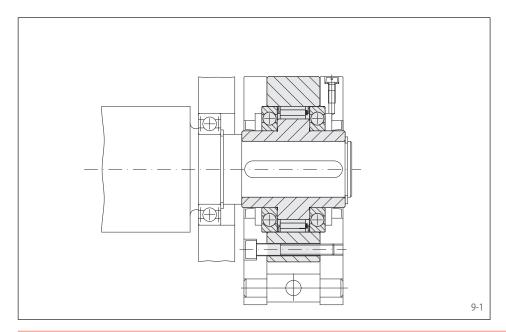
Sembradoras


En las sembradoras, la rueda libre de avance sustituye el engranaje reductor.

Ejecuciones de las ruedas libres

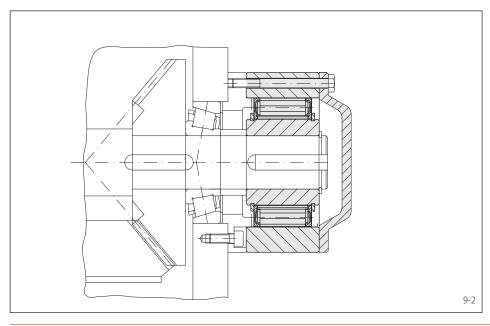
Ruedas libres completas con rodamiento

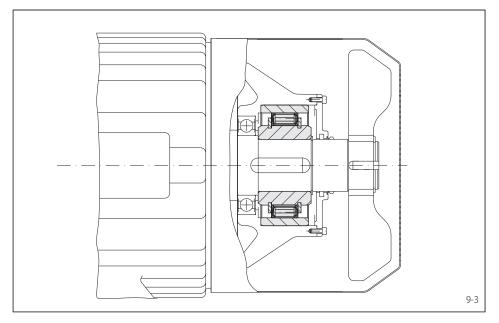

- Con soporte propio entre los aros interior y exterior.
- Completamente herméticas.
- · Con engrase propio.
- Conexión entre el aro exterior y la pieza del cliente mediante:
 - unión atornillada en la parte frontal (fig. 8-1),
 - brida de amarre,
 - unión de chaveta por el aro exterior,
 - palanca (fig. 8-2), o
 - acoplamiento de ejes.



Ruedas libres con carcasa

- Con soporte propio entre los aros interior y exterior
- Completamente encapsuladas mediante carcasa propia.
- · Con engrase propio.
- Con alojamiento propio de los ejes motriz y de salida.
- · Colocación estacionaria.




Ruedas libres con base

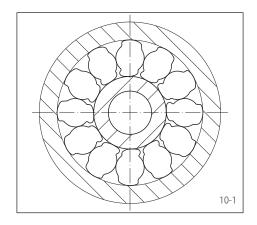
- Con soporte propio entre los aros interior y exterior
- Para completar con piezas de conexión por parte del cliente
- Lubricación a proveer por parte del cliente, si fuera necesaria

Ruedas libres externas

- Sin soporte propio. Alineación concéntrica de los aros interior y exterior a proveer por parte del cliente.
- Conexión del aro exterior a la pieza del cliente mediante unión atornillada en la parte frontal
- Lubricación a proveer por parte del cliente, si fuera necesaria

Ruedas libres incorporadas

- Series con o sin soporte propio. En las series sin soporte propio, la alineación concéntrica de los aros interior y exterior será por parte del cliente.
- Montaje del aro exterior en la carcasa del cliente mediante unión por ajuste a presión o unión de chaveta. Así se consiguen unas soluciones de montaje compactas, aptas para espacios reducidos.
- Lubricación a proveer por parte del cliente, si fuera necesaria


Ruedas libres con elementos de forma o rodillos de bloqueo

dos diferentes diseños de la rueda libre

Rueda libre con elementos de bloqueo

La rueda libre con elementos de bloqueo está provista de aros exterior e interior con pistas de rodadura cilíndricas, entre las que están dispuestos los elementos de bloqueo con resortes. La rueda libre bloquea sin deslizamiento. Debido a las diferentes formas de los elementos de bloqueo, se dispone de diferentes tipos para:

- pares elevados,
- · funcionamiento en vacío sin contacto,
- alta precisión de indexación.

Modo de funcionamiento

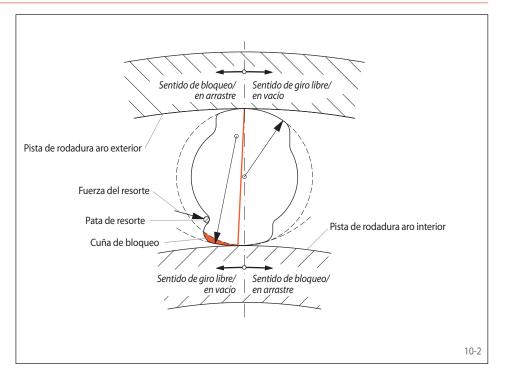
Con la disposición de los elementos de bloqueo que muestra la fig. 10-2, el aro exterior puede girar libremente (vacío) en sentido horario, cuando el aro interior

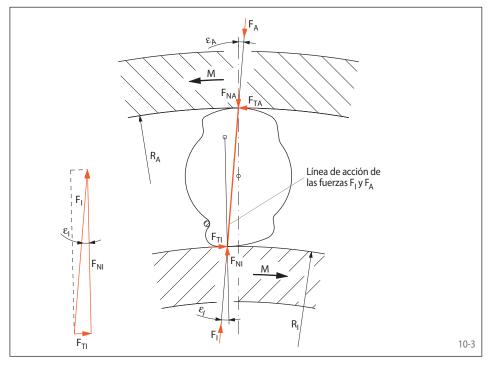
- está fijado,
- gira en sentido antihorario, o
- gira en sentido horario con una velocidad inferior a la del aro exterior.

Si con el aro interior fijado, el aro exterior gira en el sentido contrario, se activa el bloqueo. Los elementos de bloqueo enganchan sin deslizamiento entre las pistas de rodadura. En este sentido de giro puede transmitirse un par elevado (arrastre).

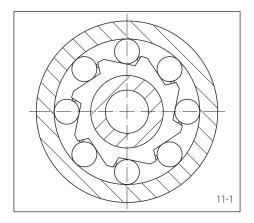
Asimismo, la disposición de los elementos de bloqueo que muestra la fig. 10-2 permite el giro libre, girando el aro interior en sentido antihorario, y el arrastre, girando en sentido horario.

Sobre la línea de acción que une los puntos de contacto de los elementos de bloqueo con la pista de rodadura del aro exterior y del aro interior, el enganche genera las fuerzas F_l y F_A en el funcionamiento de arrastre (véase fig. 10-3). Debido al equilibrio de fuerzas, dichas fuerzas son de igual magnitud. Las fuerzas F_l y F_A pueden dividirse en las fuerzas normales F_{NI} y F_{NA} y las fuerzas tangenciales F_{TI} y F_{TA} . Con relación a la fuerza F_{NI} o $F_{NA\prime}$ la línea de acción forma el ángulo de bloqueo ϵ_l o ϵ_A con $\epsilon_l > \epsilon_A$. Para alcanzar el autobloqueo, la tangente del ángulo de bloqueo ϵ_l debe ser inferior al coeficiente de fricción.


$$tan \, \epsilon_I = \frac{F_{TI}}{F_{NI}} \leqq \mu$$


Debido a la relación

$$\begin{aligned} M &= z \cdot R_I \, \cdot \, F_{TI} = z \cdot R_I \, \cdot F_{NI} \, \cdot \tan \epsilon_I \\ &= z \cdot R_A \cdot \, F_{TA} = z \cdot R_A \cdot F_{NA} \cdot \tan \epsilon_A \end{aligned}$$


siendo z = número de elementos de bloqueo,

las fuerzas normales y los ángulos de bloqueo se adaptan automáticamente al par M existente.

Rueda libre con rodillos de bloqueo

Las ruedas libre con rodillos de bloqueo disponen de rampas de bloqueo o en el aro exterior o en el interior. La pista de rodadura del otro aro es cilíndrica. Entre las dos están dispuestos los rodillos de bloqueo con sus muelles pretensados. La rueda libre bloquea sin deslizamiento.

F_{NA} F_{TA} F_{NA} F_{NA}

Modo de funcionamiento

En el modelo incorporado que muestra la fig. 11 -2, el aro exterior puede girar libremente (vacío) en sentido horario, cuando el aro interior

- · está fijado,
- gira en el sentido antihorario, o
- gira en sentido horario con una velocidad inferior a la del aro exterior.

Si con el aro interior fijado, el aro exterior gira en el sentido contrario, se activa el bloqueo. Los rodillos de bloqueo enganchan sin deslizamiento entre las pistas de rodadura. En este sentido de giro puede transmitirse un par elevado (arrastre).

Asimismo, el modelo que muestra la fig. 11-2 permite el giro libre, girando el aro interior en sentido antihorario, y el arrastre, girando en sentido horario.

Sobre la línea de acción que une los puntos de contacto de los rodillos de bloqueo con la pista de rodadura del aro exterior y del aro interior, el enganche genera las fuerzas F_1 y F_A en el funcionamiento de arrastre (véase fig. 11-3). Debido al equilibrio de fuerzas, dichas fuerzas son de igual magnitud. Las fuerzas F_1 y F_A pueden dividirse en las fuerzas normales F_{NI} y F_{NA} y las fuerzas tangenciales F_{TI} y F_{TA} . Con relación a la fuerza F_{NI} o F_{NA} , la línea de acción forma el ángulo de bloqueo ε . Para alcanzar el autobloqueo, la tangente del ángulo de bloqueo ε _I debe ser inferior al coeficiente de fricción.

$$tan\,\epsilon\,=\,\frac{F_{TA}}{F_{NA}}\leqq\mu$$

Debido a la relación

$$M = z \cdot R_A \cdot F_{TA} = z \cdot R_A \cdot F_{NA} \cdot \tan \varepsilon$$

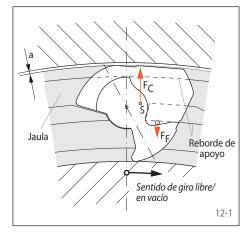
siendo z = número de rodillos de bloqueo,

la fuerza normal y el ángulo de bloqueo se adaptan automáticamente al par M existente.

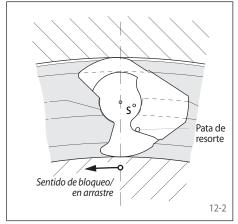
Tipos con elevada duración de vida

		Estándar	Con despegue X de los elementos de bloqueo de forma	Con despegue Z de los elementos de bloqueo de forma	RIDUVIT°	Con despegue hidrodinámico de los elementos de bloqueo de forma
		Para uso universal	Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro interior a velocidad alta	Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro exterior a velocidad alta	Para elevada duración de vida mediante recubrimiento de los elementos de bloqueo	Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro exterior a velocidad alta
	Antirretroceso	Hasta revoluciones medias en vacío (aro interior o exterior gira libremente)	Hasta revoluciones muy altas en vacío (aro interior gira libremente)	Hasta revoluciones muy altas en vacío (aro exterior gira libremente)	Hasta revoluciones altas en vacío (aro interior o exterior gira libremente)	
Aplicacion como	Embrague por adelantamiento	Hasta revoluciones medias en vacío (aro interior o exterior adelanta)	Hasta revoluciones muy altas en vacío (aro interior adelanta)	Hasta revoluciones muy altas en vacío (aro exterior adelanta)	Hasta revoluciones altas en vacío (aro interior o exterior adelanta)	Hasta revoluciones muy altas en vacío (aro exterior adelanta)
Aplicaci	Embrac	Hasta revoluciones muy altas en arrastre (aro exterior o interior arrastra)	Revoluciones bajas en arrastre (aro exterior arrastra)	Revoluciones bajas en arrastre (aro interior arrastra)	Hasta revoluciones muy altas en arrastre (aro exterior o interior arrastra)	Hasta revoluciones muy altas en arrastre (aro interior arrastra)
=	Rueda libre de avance	Hasta un número total medio de indexaciones			Hasta un número total elevado de indexaciones	

Aparte de los tipos estándar, RINGSPANN ha desarrollado cuatro tipos adicionales para una elevada duración de vida de las ruedas libres con elementos de bloqueo de forma. La tabla anterior pre-


senta un resumen cualitativo de los campos de aplicación recomendados para dichos tipos.

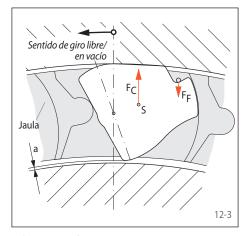
Con despegue X


El despegue X se utiliza en antirretrocesos y embragues por adelantamiento, siempre y cuando en vacío el aro interior gire a altas revoluciones y el arrastre en los embragues por adelantamiento se realice a bajas revoluciones. En vacío, la fuerza centrífuga F_C separa los elementos de bloqueo de la pista de rodadura del aro exterior. En este modo de funcionamiento la rueda libre trabaja libre de desgaste, es decir con una vida útil ilimitada.

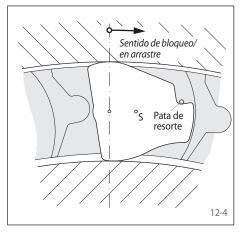
La fig. 12-1 muestra una rueda libre con despegue X en giro libre. Los elementos de bloqueo se encuentran en una jaula unida con el aro interior por fricción y giran con el aro interior. La fuerza centrífuga F_C en el centro de gravedad S gira el elemento de bloqueo en sentido antihorario, arrimándolo al reborde de apoyo de la jaula.

Así se produce la separación "a" entre los elementos de bloqueo y la pista de rodadura del aro exterior, y

la rueda libre trabaja sin contacto. Si la velocidad del aro interior se reduce de tal forma que el efecto de la fuerza centrífuga sobre los elementos de bloqueo sea inferior a la fuerza de retención de los resortes F_p los elementos de bloqueo vuelven a su posición inicial,



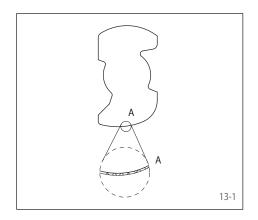
teniendo contacto con el aro exterior y quedando la rueda libre preparada para el bloqueo (fig. 12-2). Al utilizar la rueda libre como embrague por adelantamiento, las revoluciones de arrastre no deben superar el 40% de las revoluciones de despegue.


Con despegue Z

El despegue Z se utiliza en antirretroceso y embragues por adelantamiento, siempre y cuando en giro libre el aro exterior gire a altas revoluciones y el arrastre en los embragues por adelantamiento se realice a bajas revoluciones. En vacío, la fuerza centrífuga F_C separa los elementos de bloqueo de la pista de rodadura del aro interior. En este modo de funcionamiento la rueda libre trabaja libre de desgaste, es decir con una vida útil ilimitada.

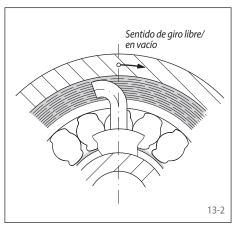
La fig. 12-3 muestra una rueda libre con despegue Z en vacío. Los elementos de bloqueo giran con el aro exterior. La fuerza centrífuga F_C en el centro de gravedad S gira el elemento de bloqueo en sentido antihorario, arrimándolo al aro exterior. Así se produce la separación "a" entre los elementos de bloqueo y la pista de rodadura del aro interior, y la rueda libre funciona sin contacto. Si la velocidad del aro exterior se reduce de tal forma que el efecto de

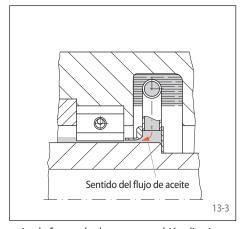
la fuerza centrífuga sobre los elementos de bloqueo sea inferior a la fuerza de retención de los resortes F_p los elementos de bloqueo vuelven a su posición inicial, teniendo contacto con el aro interior y quedando la rueda libre preparada para el bloqueo


(fig. 12-4). Al utilizar la rueda libre como rueda por adelantamiento, las revoluciones de arrastre no deben superar el 40% de las revoluciones de elevación.

RIDUVIT®

Los elementos de bloqueo RINGSPANN son de acero al cromo, utilizado también para bolas y rodillos en rodamientos. La alta resistencia a la compresión, la elasticidad y la solidez de este material son necesarias para el estado de bloqueo de los elementos de bloqueo. En el funcionamiento en vacío, en cambio, el factor más importante es la alta resistencia al desgaste de los elementos de bloqueo en los puntos de contacto con la pista de rodadura del aro interior. El elemento de bloqueo de acero al cromo con recubrimiento RIDUVIT satisface perfectamente todas estas exigencias. El recubrimiento RIDUVIT® le proporciona al elemento de bloqueo


una resistencia al desgaste parecida a la de los metales duros. La tecnología aplicada en este caso se basa en los últimos conocimientos de las investigaciones tribológicas. Los elementos de bloqueo RIDUVIT® multiplican la duración de vida y se utilizan en antirretrocesos y embragues por adelantamiento.


Con despegue hidrodinámico de los elementos de bloqueo de forma

El despegue hidrodinámico de los elementos de bloqueo es la solución idónea para embragues por adelantamiento para altas revoluciones, no sólo en vacío, sino también en arrastre, tal y como se dan en accionamientos múltiples. En el despegue hidrodinámico de los elementos de bloqueo, la fuerza de separación es generada por el flujo de aceite. El número de revoluciones relativo entre los aros interior y exterior es decisivo para el despegue. Al contrario que las ruedas libres con despegue X o Z de los elementos de bloqueo, en este caso el número de revoluciones de arrastre puede ser igual de alto que el número de revoluciones en vacío.

Las ruedas libres con despegue hidrodinámico de los elementos de bloqueo (series FKh) llevan incorporada una bomba de aceite que trabaja según el principio de aspersión. Los tubos de aspersión están conectados al aro interior. Con el aro exterior girando, en la cámara de aceite se forma un anillo de aceite en el que se sumergen los tubos de aspersión. En cuanto el aro exterior adelante al aro interior, los tubos de aspersión transportan el aceite bajo presión a la cámara circular, donde el aceite entra axialmente y a gran velocidad en los huecos entre los elementos de bloqueo a través de la ra-

nura circular. Dependiendo del número de revoluciones relativo entre el aro exterior e interior, el flujo de aceite no entra axialmente en los huecos entre los elementos de bloqueo, sino en ángulo. De este modo, los elementos de bloqueo reciben una fuerza reactiva. Dicha fuerza reactiva vence la fuerza de apriete de los resortes, separando así los elementos de bloqueo del aro interior. Este proceso es soportado por la formación de una cuña hidrodinámica de engrase. Al reducirse el número de revoluciones relativo entre los aros exterior e in-

terior, la fuerza de despegue también disminuye. Los elementos de bloqueo vuelven a tener contacto con el aro interior con total seguridad antes de alcanzar la marcha sincronizada, quedando así preparados para el bloqueo. Ello garantiza una transmisión directa de la carga al alcanzar las revoluciones de sincronizado. El despegue hidrodinámico de los elementos de bloqueo facilita el funcionamiento en vacío, prácticamente sin desgaste.

Determinación del par de selección

Determinación del par de selección para antirretrocesos

La parada de una cinta transportadora inclinada cargada, un elevador o una bomba, por ejemplo, es un proceso altamente dinámico, en el que se producen pares punta altos. Estos pares punta son decisivos para la selección del antirretroceso. La forma más segura de determinar previamente el par existente en caso de bloqueo es el análisis de vibraciones torsionales del sistema completo. Sin embargo, esto requiere, entre otros, el conocimiento de masas de torsión, rigidez torsional y todos los momentos excitadores que influyen en el sistema. En muchos casos, un cálculo de oscilaciones es demasiado laborioso, o bien, no se dispone de todos los datos necesarios durante la fase de planificación. En tales casos, el par Ma del antirretroceso debería determinarse de la manera siguiente:

$$M_A = 1,75 \cdot M_I [Nm]$$

En muchos casos, sólo se conoce la potencia nominal del motor P₀ [kW]. En tales casos se aplica lo siguiente:

$$M_A = 1,75 \cdot F^2 \cdot 9550 \cdot P_0 / n_{SP} [Nm]$$

Los elementos de estas ecuaciones significan lo siguiente:

M_A = par de determinación del antirretroceso [Nm]

$$M_I = 9550 \cdot F \cdot P_I / n_{SP} [Nm]$$

 par de retroceso estático de la carga con relación al eje del bloqueo [Nm]

P_L = carrera de la instalación de transporte bajo plena carga [kW]

 altura de transporte [m] multiplicada por la carga transportada por segundo [kN/s]

P₀ = potencia motor nominal [kW]

n_{SP} = número de revoluciones del eje del antirretroceso [min⁻¹]

F = Factor de selección (véase tabla contigua)

Una vez calculado M_A, el tamaño del antirretroceso debe seleccionarse según las tablas del catálogo con las siguientes condiciones:

 $M_N \ge M_A$

M_N = par nominal del antirretroceso según los valores de la tabla Hay que tener en cuenta que en un arranque directo del motor en el sentido de bloqueo de un antirretroceso se generan unos pares punta muy altos, capaces de destruir el antirretroceso.

Valores orientativos para F:

Tipo de instalación	F	F ²
Cintas transportadoras, inclinación de hasta 6°	0,71	0,50
Cintas transportadoras, inclinación de hasta 8°	0,78	0,61
Cintas transportadoras, inclinación de hasta 10°	0,83	0,69
Cintas transportadoras, inclinación de hasta 12°	0,86	0,74
Cintas transportadoras, inclinación de hasta 15°	0,89	0,79
Bombas rascadoras de tornillo sinfín	0,93	0,87
Molinos cónicos, tambores de secado	0,85	0,72
Transportadores de cangilones, elevadores	0,92	0,85
Trituradoras de martillos	0,93	0,87
Sopladores, ventiladores	0,53	0,28

Determinación del par de selección para embragues por adelantamiento

En muchos casos de aplicación de embragues por adelantamiento se presentan procesos dinámicos que generan pares punta altos. En los embragues por adelantamiento deben observarse los pares que se presentan durante el arranque. En los motores asíncrono, los picos de par durante el arranque pueden alcanzar un múltiplo del par calculado en base al par de inversión, especialmente al acelerar masas elevadas y utilizando acoplamientos elásticos a la torsión. La relación es parecida en motores de combustión interna que incluso en funcionamiento normal generan picos de par muy superiores al valor nominal debido a su grado de irregularidad.

La forma más segura de determinar previamente el par máximo es un análisis de oscilaciones del sistema completo. Sin embargo, esto requiere, entre otros, el conocimiento de masas de torsión, rigidez torsional y todos los momentos excitadores que influyen en el sistema. En muchos casos, un cálculo de oscilaciones es demasiado laborioso, o bien, no se dispone de todos los datos necesarios durante la fase de planificación. En tales casos, el par M_A de la rueda por adelantamiento debería determinarse de la manera siguiente:

 $M_A = K \cdot M_L$

Los elementos de estas ecuaciones significan lo siguiente:

M_A = par de determinación de la rueda libre

K = factor de funcionamiento (véase tabla contigua)

M_L = par de la carga con la rueda libre girando uniformemente

 $= 9550 \cdot P_0 / n_{FR}$

P₀ = potencia motor nominal [kW]

n_{FR} = número de revoluciones de la rueda libre en [min⁻¹]

Una vez calculado M_{Ar} el tamaño la rueda libre debe seleccionarse según las tablas del catálogo con las siguientes condiciones:

 $M_N \ge M_A$

M_N = par nominal de la rueda libre en [Nm] de acuerdo con las tablas del presente documento. Valores orientativos para el factor de funcionamiento K:

Tipo de accionamiento	K
Motor eléctrico con reducidos golpes durante el arranque (p. ej. motor CC, motor asíncrono de anillos colectores o embrague de arranque), turbina de vapor, turbina de gas	0,8 bis 2,5
Motor eléctrico con elevadas vibraciones du- rante el arranque (p. ej. motor sincrónico o asín- crono con conexión directa)	1,25 bis 2,5
Motor de émbolos con más de dos cilindros, turbina de agua, motor hidráulico	1,25 bis 3,15
Motor de émbolos con uno o dos cilindros	1,6 bis 3,15

El factor de funcionamiento K depende de las características del equipo de accionamiento y de trabajo. En tal caso, se aplican las reglas de la ingeniería mecánica. De la práctica se conocen aplicaciones, en las que el factor de funcionamiento K puede adoptar incluso valores de hasta 20, como p. ej. en el arranque directo de los motores eléctricos asíncrono en combinación con acoplamientos elásticos de goma.

Determinación del par de selección para ruedas libres de avance

La determinación del par de selección para las ruedas libres de avance depende, entre otras cosas, de cómo se genera el movimiento de vaivén (mecanismo de manivela, cilindro hidráulico, cilindro neumático, etc.). No puede expresarse en unas simples ecuaciones. Si nos indica el par

máximo a transmitir, les aconsejaremos con mucho gusto acerca de la selección del par.

La selección de la rueda libre adecuada depende de varios factores. Para que podamos seleccionar la rueda libre idónea para sus fines, les rogamos rellenen el correspondiente cuestionario en las páginas 112 a 116 y nos lo envíen.

En caso de que desee seleccionar la rueda libre Vd. mismo, le recomendamos el siguiente procedimiento, sin aceptar por nuestra parte responsabilidad alguna por posibles errores en la selección:

1. Determinación de la aplicación de la rueda libre como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Para más información, véase página 5.

2. Determinación de la ejecución adecuada de la rueda libre como

- Rueda libre completa con rodamiento
- Rueda libre con carcasa
- Rueda libre con base
- Rueda libre externa
- Rueda libre incorporada

Para más información, véase páginas 8 y 9.

Determinación de la selección del par de la rueda libre

Para más información, véase página 14.

Los pares nominales de las ruedas libres indicados en el catálogo, están diseñados para aplicaciones en ejes macizos y según los espesores mínimos especificados para la carcasa exterior y anillos exteriores. Al usar ruedas libres en árboles huecos o si el espesor de la pared exterior es inferior al especificado, el par transmisible debe ser comprobado por RINGSPANN.

4. Determinación del tipo adecuado de la rueda libre como

- · Tipo estándar
- Tipo con despegue X de los elementos de bloqueo
- Tipo con despegue Z de los elementos de bloqueo
- Tipo RIDUVIT®
- Tipo con despegue hidrodinámico de los elementos de bloqueo

Para más información, véase páginas 12 y 13.

5. Selección de la rueda libre adecuada

Para más información, consulte el índice en las páginas 2 y 3, las figuras de las diferentes series en las páginas 16 a 103, así como las indicaciones técnicas en las páginas 108 a 111.

Ruedas libres completas FB

RINGSPANN®

para uniones atornilladas en la parte frontal con elementos de bloqueo en cuatro diferentes tipos

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las ruedas libres completas FB con rodamientos son ruedas libres con elementos de bloqueo, provistas de rodamientos de bolas y retenes. Están provistas de aceite y preparadas para su montaje. Aparte del tipo estándar, se dispone de tres tipos más para una elevada duración de vida.

Par nominal hasta 160 000 Nm.

Diámetros interiores hasta 300 mm. Otros diámetros estándar, estarán disponibles a corto plazo.

Ejemplo de aplicación

Dos ruedas libres completas FB 82 SFT utilizadas como embragues por adelantamiento en el accionamiento de la cizalla para rebordear en una línea de tren de laminación de banda ancha. En el corte de los cantos de la cinta, los rodillos de corte son accionados por el accionamiento de la cizalla para rebordear. En este proceso, las dos ruedas libres trabajan en funcionamiento de arrastre. En cuanto el siguiente par de rodillos sujete la cinta de chapa, tira de ella con un número de revoluciones mayor y los aros interiores adelantan al accionamiento de la cizalla de rebordear, que gira con un número de revoluciones inferior. Las ruedas libres trabajan en funcionamiento en vacío. Los elementos de bloqueo RIDUVIT® garantizan una elevada duración de vida.

Instrucciones de montaje

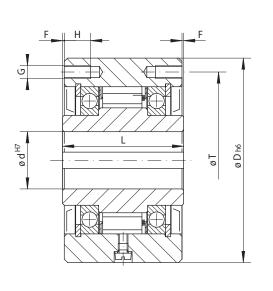
La pieza complementaria por parte del cliente se centra en el diámetro exterior D y se atornilla en la parte frontal.

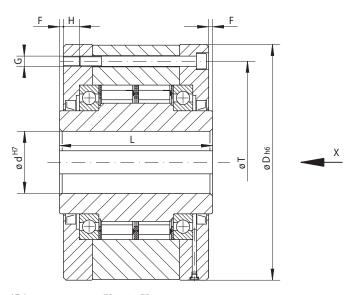
Como tolerancia del eje se debe aplicar ISO h6 o j6, como tolerancia para el diámetro D para el centrado de la pieza complementaria se debe aplicar ISO H7 o J7.

Ejemplo de pedido

Rueda libre FB 72 con despegue Z de los elementos de bloqueo con un diámetro interior de 40 mm:

• FB 72 LZ, d = 40 mm


Para los tipos FB 340 y FB 440, rogamos que en sus pedidos indiquen adicionalmente el sentido de giro libre del aro interior visto en dirección X:


- libre en el sentido contrario a las agujas del reloj
- libre en el sentido de las agujas del reloj

Ruedas libres completas FB

RINGSPANN®

para uniones atornilladas en la parte frontal con elementos de bloqueo en cuatro diferentes tipos

FB 24 a FB 270	17-1	FB 340 a FB 440	17-2

re de avance gue por adel. ntirretroceso	Estándar Para uso universal	RIDUVIT® Para elevada duración de vida mediante recubrimiento de los elementos de bloqueo	Con despegue X Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro interior a velocidad alta	Con despegue Z Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro exterior a velocidad alta
dalib nbrac				
Ruec FI				

Rueda libre	Tipo	Par nominal M _N Nm	Revolucio Aro interior gira libre/ adelanta min ⁻¹	ones máx. Aro exterior gira libre/ adelanta min ⁻¹	Tipo	Par nominal M _N Nm	Revolucio Aro interior gira libre/ adelanta min ⁻¹	ones máx. Aro exterior gira libre/ adelanta min ⁻¹	Tipo	Par nominal M _N Nm	Velocidad de despegue aro interior min ⁻¹	Revolucio Aro interior I gira libre/ adelanta min ⁻¹	nes máx. Aro exterior arrastra min ⁻¹	Tipo	Par nominal M _N Nm	Velocidad de despegue aro exterior min ⁻¹	Revolucio Aro exterior gira libre/ adelanta min ⁻¹	ones máx. Aro interior arrastra min ⁻¹
FB 24	CF	45	4 800	5 500	CFT	45	4 800	5 500										
FB 29	CF	80	3 500	4 000	CFT	80	3 500	4 000										
FB 37	SF	200	2 500	2 600	SFT	200	2 500	2 600						CZ	110	850	3 000	340
FB 44	SF	320	1 900	2 200	SFT	320	1 900	2 200	DX	130	860	1 900	344	CZ	180	800	2 600	320
FB 57	SF	630	1 400	1 750	SFT	630	1 400	1 750	DX	460	750	1 400	300	LZ	430	1 400	2 100	560
FB 72	SF	1 250	1 120	1 600	SFT	1 250	1 120	1 600	DX	720	700	1 150	280	LZ	760	1 220	1 800	488
FB 82	SF	1 800	1 025	1 450	SFT	1 800	1 025	1 450	DX	1 000	670	1 050	268	SFZ	1 700	1 450	1 600	580
FB 107	SF	2 500	880	1 250	SFT	2 500	880	1 250	DX	1 500	610	900	244	SFZ	2 500	1 300	1 350	520
FB 127	SF	5 000	800	1 150	SFT	5 000	800	1 150	SX	3 400	380	800	152	SFZ	5 000	1 200	1 200	480
FB 140	SF	10 000	750	1 100	SFT	10 000	750	1 100	SX	7 500	320	750	128	SFZ	10 000	950	1 150	380
FB 200	SF	20 000	630	900	SFT	20 000	630	900	SX	23 000	240	630	96	SFZ	20 000	680	900	272
FB 270	SF	40 000	510	750	SFT	40 000	510	750	UX	40 000	210	510	84	SFZ	37 500	600	750	240
FB 340	SF	80 000	460	630	SFT	80 000	460	630										i l
FB 440	SF	160 000	400	550	SFT	160 000	400	550										

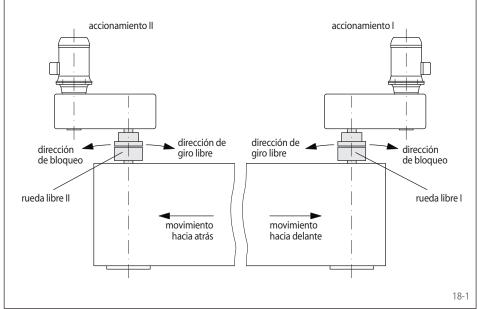
El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario.

		Diám	etro d	D	F	G**	Н	L	Т	Z**	Peso
Rueda	libre	Estándar	máx.							_	
		mm	mm	mm	mm		mm	mm	mm		kg
FB	24	12	14*	62	1,0	M 5	8	50	51	3	0,9
FB	29	15	17*	68	1,0	M 5	8	52	56	3	1,1
FB	37	20	22*	75	0,5	M 6	10	48	65	4	1,3
FB	44	25*	25*	90	0,5	M 6	10	50	75	6	1,9
FB	57	30	32*	100	0,5	8 M	12	65	88	6	2,8
FB	72	40	42*	125	1,0	M 8	12	74	108	12	5,0
FB	82	50*	50*	135	2,0	M 10	16	75	115	12	5,8
FB	107	60	65*	170	2,5	M 10	16	90	150	10	11,0
FB	127	70	75*	200	3,0	M 12	18	112	180	12	19,0
FB	140	90	95*	250	5,0	M 16	25	150	225	12	42,0
FB	200	120	120	300	5,0	M 16	25	160	270	16	62,0
FB	270	140	150	400	6,0	M 20	30	212	360	18	150,0
FB	340	180	240	500	7,5	M 20	35	265	450	24	275,0
FB	440	220	300	630	7,5	M 30	40	315	560	24	510,0

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

^{*}Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.


** Z = número de agujeros roscados G en el círculo primitivo T.

Ruedas libres completas FR ...

RINGSPANN®

para uniones atornilladas en la parte frontal en pulgadas con elementos de bloqueo, disponible en cuatro tipos

			Diámet	ros estándar y	chaveteros [in	ch]									
EB 300	FR 300 0,500 0,625 0,750 1/8 x 1/16 3/16 x 3/32 3/16 x 3/32														
111500	1/8 x 1/16	3/16 x 3/32													
FR 400	0,500	0,625	0,750	0,875	1,000										
111400	1/8 x 1/16		3/16 x 3/32			1/4 x 1/8									
FR 500	0,875	1,000	1,125	1,250	1,312										
111500	3/16 x 3/32	1/4 x 1/8			1/4 x 3/32										
FR 550	1,250	1,312		1,625											
111 550	1/4 x 1/8	3/8 x 3/16		3/8 x 1/8											
FR 600	1,250	1,375		1,500	1,625	,	1,750	,	2,000						
111000	1/4 x 1/8	3/8 x 3/16		3/8 x 3/16	3/8 x 3/16	3/8 x 3/16	3/8 x 3/16	3/8 x 1/8	3/8 x 1/8						
FR 650	1,938	2,000	2,250	2,438	2,500										
111050	1/2 x 1/4	1/2 x 1/4	1/2 x 1/4	5/8 x 1/8											
FR 700	1,938	2,000	2,250	2,438	2,500		2,938								
1111111700	1/2 x 1/4	1/2 x 1/4		5/8 x 5/16			5/8 x 1/8								
FR 750	2,438	2,500	2,938	3,000	3,250	3,438									
1111111750	5/8 x 5/16	5/8 x 5/16													
FR 775	2,750	2,938		3,250	,	,	3,750								
11(,7,5	5/8 x 5/16	3/4 x 3/8					7/8 x 1/4								
FR 800	3,000	3,250	3,438	3,500		3,937	4,000	4,250	4,500						
1111111000	3/4 x 3/8	3/4 x 3/8		7/8 x 7/16			1 x 1/2	1 x 3/8	1 x 1/4						
FR 900	4,000	4,438		4,938	5,000										
111 500	1 x 1/2			1 1/4 x 5/16											
FR1000	5,750	5,938		,	· '	7,000									
1111000	1 1/2 x 3/4	1 1/2 x 3/4	1 1/2 x 3/4	1 3/4 x 7/16	1 3/4 x 7/16	1 3/4 x 7/16									

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Ruedas libres completas FR ... con rodamientos, son ruedas libres con elementos de bloqueo, provistas de rodamientos de bolas y retenes.

Están provistas de aceite y preparadas para su montaje.

Aparte del tipo estándar, se dispone de tres tipos más para una elevada duración de vida.

Pares nominales hasta 27 500 lb-ft.

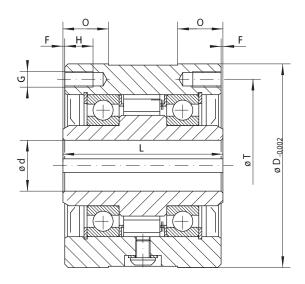
Diámetros interiores hasta 7 inch. Se dispone de una amplia gama de diámetros interiores estándar.

Ejemplo de aplicación

Ruedas libres completas FRS 600 en ambos accionamientos, en un sistema de trasporte cuya cinta transportadora opera en ambas direcciones (operación reversible). Con el fin de asegurar que la cinta del transportador se mueva siempre bajo tensión, el movimiento hacia delante lo realiza el accionamiento motor I mientras que, el movimiento hacia atrás lo realiza el accionamiento motor II. Las ruedas libres desacoplan de manera automática el motor no activo, eliminando la necesidad de un embraque de cambio costoso.

Para el movimiento hacia delante, se comienza actuando con el accionamiento motor II en dirección de marcha libre de la rueda libre II; la rueda libre II se encuentra funcionando en giro libre y desacopla el accionamiento motor II de la cinta transportadora. A continuación, se activa el accionamiento motor I en arrastre de la rueda libre I; la rueda libre I se encuentra funcionando en arrastre y el accionamiento motor I arrastra la cinta hacia delante. La velocidad del accionamiento motor I, es en ese caso, es inferior que la velocidad del accionamiento motor II. Para que la rueda libre II pueda seguir girando libre y el accionamiento motor II no sea arrastrado indebidamente.

Para el cambio de sentido, en los accionamientos motores se invierte el arranque, así como las velocidades correspondientes.


Instrucciones de montaje

La pieza de conexión por parte del cliente se centra en el diámetro exterior D y se atornilla en la parte frontal.

La tolerancia del eje debe ser + 0/-0.001 inch y la tolerancia del diámetro D para el centrado de la pieza de conexión es de -0/+0.002 inch.

Ruedas libres completas FR ...

para uniones atornilladas en la parte frontal en pulgadas con elementos de bloqueo, disponible en cuatro tipos

19-1

gue por adel. ntirretroceso	Estándar Para uso universal	Estándar - lubricación por grasa Para uso universal	Con despegue X Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro interior a velocidad alta	Con despegue Z Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro exterior a velocidad alta
Rueda lib Embra				

		Revolucio	nes máx.				Revolucio	ones máx.				Revolucio	ones máx.				Revolucio	ones máx.
	Par		Aro exterior			Par		Aro exterior		Par	Velocidad de	Aro interior			Par	Velocidad de		Aro interior
Rueda libre	nominal	gira libre/	gira libre/	Rueda	libre	nominal	gira libre/	gira libre/	Rueda libre	nominal	despegue	gira libre/	Aro exterior	Rueda libre	nominal	despegue	gira libre/	arrastra
	M _N	adelanta	adelanta			M _N	adelanta	adelanta		M _N	aro interior	adelanta	arrastra		M _N	aro exterior	adelanta	
	lb-ft	min ⁻¹	min ⁻¹			lb-ft	min ⁻¹	min ⁻¹		lb-ft	min ⁻¹	min ⁻¹	min ⁻¹		lb-ft	min ⁻¹	min ⁻¹	min ⁻¹
FRS 300	210	2500	2600	FRSG	300	210	3600	3 6 0 0										
FRS 400	335	1900	2100	FRSG	400	335	3600	3 6 0 0	FRX 400	125	860	4000	340	FRZ 400	280	800	2600	320
FRS 500	800	1400	1 900	FRSG	500	800	3600	3 6 0 0	FRX 500	425	750	4000	300	FRZ 500	535	1 400	2050	560
FRS 550	1525	1175	1600	FRSG	550	1525	3600	3600	FRX 550	750	700	4000	280	FRZ 550	1380	1550	1800	620
FRS 600	1950	1100	1 500	FRSG	600	1950	3600	3 6 0 0	FRX 600	1 000	670	4000	265	FRZ 600	1765	1 450	1650	580
FRS 650	2700	900	1 250	FRSG	650	2700	3600	3600	FRX 650	1750	610	4000	240	FRZ 650	2500	1300	1400	520
FRS 700	5 5 2 5	790	1150	FRSG	700	5 5 2 5	1800	1800	FRX 700	4050	350	3 6 0 0	140	FRZ 700	5 2 5 0	1160	1 200	465
FRS 750	9350	790	1150	FRSG	750	9350	1800	1800	FRX 750	7500	320	2400	125	FRZ 750	8750	1160	1200	465
FRS 775	8500	750	1 050	FRSG	775	8500	1800	1800	FRX 775	7400	320	2100	125	FRZ 775	6500	950	1050	380
FRS 800	11100	700	950	FRSG	800	11100	1800	1800	FRX 800	14500	250	1800	100	FRZ 800	8700	880	975	350
FRS 900	16800	700	950	FRSG	900	16800	1 200	1 200	FRX 900	15 000	250	650	100	FRZ 900	13 000	720	925	288
FRS 1000	27500	630	800	FRSG	1000	27500	1200	1200										

El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario.

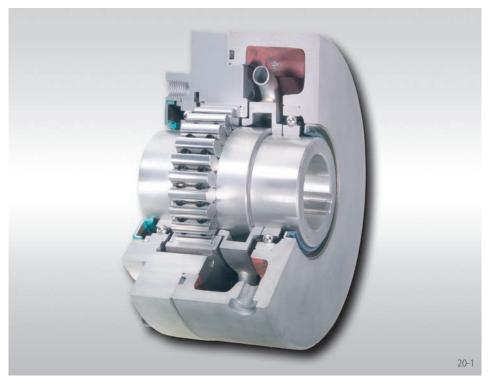
Rueda libre					Diáme	tro d					D	F	G	L	Н	0	Т	Z*	Peso
					Estándar					máx.			rosca						
					inch					inch	inch	inch		inch	inch	inch	inch		lbs
FR 300	0,500	0,650	0,750							0,750	3,000	0,063	0,250-28	2,500	0,375	0,750	2,625	4	3,5
FR 400	0,500	0,625	0,750	0,875	1,000	1,125				1,125	3,500	0,032	0,312-24	2,750	0,500	0,750	2,875	4	6,0
FR 500	0,875	1,000	1,125	1,250	1,312					1,312	4,250	0,063	0,312-24	3,500	0,625	1,000	3,625	4	10,0
FR 550	1,250	1,312	1,500	1,625						1,625	4,750	0,063	0,312-24	3,250	0,540	0,750	4,250	6	12,0
FR 600	1,250	1,375	1,438	1,500	1,625	1,688	1,750	1,938	2,000	2,000	5,375	0,063	0,312-24	3,750	0,625	1,000	4,750	6	19,0
FR 650	1,938	2,000	2,250	2,438	2,500					2,500	6,500	0,063	0,375-24	3,500	0,750	1,000	5,750	8	24,0
FR 700	1,938	2,000	2,250	2,438	2,500	2,750	2,938			2,938	7,125	0,063	0,375-24	5,000	0,750	1,000	6,250	8**	42,0
FR 750	2,438	2,500	2,938	3,000	3,250	3,438				3,438	8,750	0,063	0,500-20	6,000	0,875	1,250	7,000	8**	83,0
FR 775	2,750	2,938	3,000	3,250	3,438	3,500	3,750			3,750	9,750	0,063	0,500-20	6,000	0,875	1,250	8,500	8	96,0
FR 800	3,000	3,250	3,438	3,500	3,750	3,937	4,000	4,250	4,500	4,500	10,000	0,063	0,500-20	6,000	0,875	1,250	8,937	8	102,0
FR 900	4,000	4,438	4,500	4,938	5,000	5,438				5,438	12,000	0,063	0,625-18	6,375	1,000	1,375	9,750	10	156,0
FR1000	5,750	5,938	6,000	6,750	6,875	7,000				7,000	15,000	0,063	0,625-18	6,625	1,000	1,375	11,750	12	250,0

Ejemplo de pedido

Rueda libre FR... 700, con despegue Z de los elementos de bloqueo y diámetro interior de 2 inch.

• FRZ 700, d = 2 inch

^{*} Z = número de agujeros roscados G en el círculo primitivo T.


** Seis agujeros equidistantes a 60° con dos agujeros adicionales a 180°, situados a 30 ° respecto de los seis agujeros equidistantes.

Factores de conversión: 1 lb-ft = 1,35 Nm, 1 inch = 25,4 mm, 1 lbs = 0,453 kg.

Ruedas libres completas FKh

RINGSPANN®

para uniones atornilladas en la parte frontal con despegue hidrodinámico para accionamientos múltiples

20-2

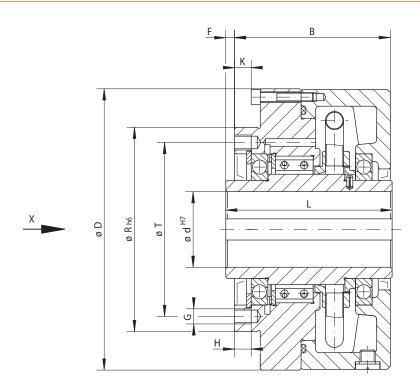
Aplicación como

Embragues por adelantamiento

para altas velocidades, iguales o similares, tanto en operación de giro libre como en arrastre.

Características

Las ruedas libres completas FKh con despegue hidrodinámico de los elementos de bloqueo se utilizan especialmente en aquellos casos en los que un grupo es accionado por dos o más motores o turbinas con un número de revoluciones igual o similar.


Las ruedas libres completas FKh disponen de elementos de bloqueo de forma, equipadas con rodamientos de bolas y retenes. Se suministran provistas de aceite y preparadas para su montaje. Pares nominales hasta 14 000 Nm.

Diámetros interiores hasta 95 mm.

Ejemplo de aplicación

Dos ruedas libres completas FKh 28 ATR utilizadas como embragues por adelantamiento en el accionamiento de un ventilador. Para accionar el ventilador se puede elegir entre un motor eléctrico o una turbina. Las ruedas libres entre el ventilador y los dos grupos de accionamiento acoplan automáticamente el ventilador con el accionamiento que está trabajando, desacoplando el accionamiento inactivo. Las ruedas libres sustituyen los embragues de cambio, que necesitarían un accionamiento adicional para realizar el cambio entre los accionamientos del ventilador. El despegue hidrodinámico de los elementos de bloqueo es la solución idónea para el funcionamiento en vacío libre de desgaste, cuando las revoluciones en vacío y en arrastre son iguales o similares.

para uniones atornilladas en la parte frontal con despegue hidrodinámico para accionamientos múltiples

21-1

nbrague por lantamiento	Con despegue hidrodir Para elevada duración de v de bloqueo al gira	e los elementos			Dimensione	s			
ade Er									

				Revolucio	ones máx.	Diám	etro	В	D	F	G**	Н	K	L	R	T	Z**	Peso
			Par	Aro exterior	Aro interior	d												
			nominal	adelanta	arrastra													
Rueda I	libre	Tipo	M _N			Estándar	máx.											
			Nm	min ⁻¹	min ⁻¹	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm		kg
FKh	24	ATR	1 100	3 000	3 000	35	40*	90	170	1,0	M 10	11	9	95	135	115	6	9,6
FKh	28	ATR	1 800	2 000	2 000	45	50*	103	186	1,0	M 10	11	11	105	135	115	12	14,0
FKh	94	ATR	2 500	1 800	1 800	60	60	112	210	7,0	M 10	16	9	120	170	150	10	19,0
FKh 1	106	ATR	4 200	1 600	1 600	70	75*	116	250	7,5	M 12	18	8	125	200	180	12	25,0
FKh 1	148	ATR	7 000	1 600	1 600	80	95*	156	291	7,5	M 16	25	9	165	250	225	12	52,0
FKh 2	.53	ATR	14 000	1 600	1 600	90	95*	241	345	2,0	M 16	25	6	245	250	220	16	98,0

El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario.

Instrucciones de montaje

La pieza complementaria por parte del cliente se centra en el diámetro R y se atornilla en la parte frontal.

El montaje debe realizarse de modo que el accionamiento (en arrastre) se realice mediante el aro interior y el aro exterior adelante en vacío.

La tolerancia del eje debe ser ISO h6 o j6, la tolerancia del diámetro R para el centrado de la pieza complementaria debe ser ISO H7 o J7.

Ejemplo de pedido

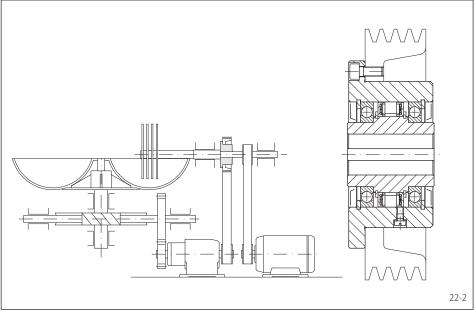
Rueda libre FKh 28 con despegue hidrodinámico de los elementos de bloqueo de forma y un diámetro interior de 45 mm:

• FKh 28 ATR, d = 45 mm

Rogamos que en sus pedidos indiquen adicionalmente el sentido de giro libre del aro exterior visto en dirección X:

- libre en sentido antihorario
- libre en sentido horario


Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10. * Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.


^{**} Z = número de agujeros roscados G en el círculo primitivo T.

Ruedas libres completas FBF

RINGSPANN®

con brida de amarre con elementos de bloqueo en cuatro diferentes tipos

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las ruedas libres completas FBF con brida de amarre son ruedas libres con elementos de bloqueo de forma, equipadas con rodamientos de bolas y retenes. Se suministran provistas de aceite y preparadas para su montaje.

Aparte del tipo estándar, se dispone de tres tipos más para una elevada duración de vida.

Pares nominales hasta 160 000 Nm.

Diámetros interiores hasta 300 mm. Otros diámetros estándar, estarán disponibles a corto plazo.

Ejemplo de aplicación

Ruedas libres completas FBF 72 DX como embraque por adelantamiento en el accionamiento de una máquina de tratamiento de carne (cutter). Durante el proceso de mezcla, el motorreductor acciona el recipiente a través del engranaje, accionando simultáneamente el eje portacuchillas a través de la correa y la rueda libre bloqueada. Durante el proceso de corte, un segundo motor acciona el eje portacuchillas a altas revoluciones. En este proceso, el aro interior adelanta al aro exterior accionado por el motorreductor, quedando el motorreductor desacoplado automáticamente. Dadas las altas revoluciones del aro interior en vacío, se utiliza el tipo con despegue X. En funcionamiento en vacío, los elementos de bloqueo de forma trabajan sin contacto y, por tanto, libres de desgaste.

Instrucciones de montaje

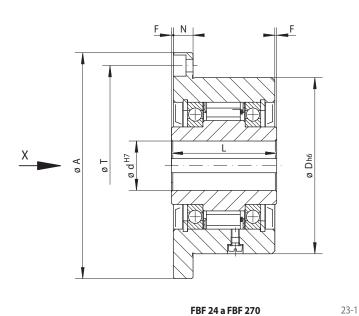
La pieza complementaria por parte del cliente se centra en el diámetro exterior D y se atornilla en la parte frontal mediante la brida.

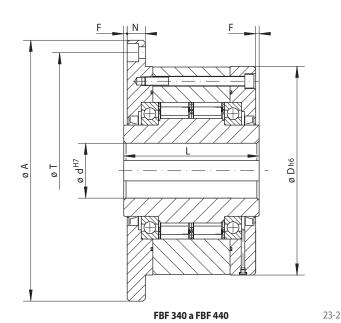
La tolerancia del eje debe ser ISO h6 o j6, la tolerancia del diámetro D para el centrado de la pieza complementaria debe ser ISO H7 o J7.

Ejemplo de pedido

Rueda libre FBF 72 con despegue X de los elementos de bloqueo de forma con un diámetro interior de 40 mm:

• FBF 72 DX, d = 40 mm


Rogamos que en sus pedidos indiquen adicionalmente el sentido de giro libre del aro interior visto en dirección X:


- · libre en sentido antihorario
- libre en sentido horario

Ruedas libres completas FBF

RINGSPANN®

con brida de amarre con elementos de bloqueo en cuatro diferentes tipos

libre de avance rague por adel. Antiiretroceso	Estándar Para uso universal	RIDUVIT® Para elevada duración de vida mediante recubrimiento de los elementos de bloqueo	Con despegue X Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro interior a velocidad alta	Con despegue Z Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro exterior a velocidad alta
edalib Embra				
Ruec Fi				

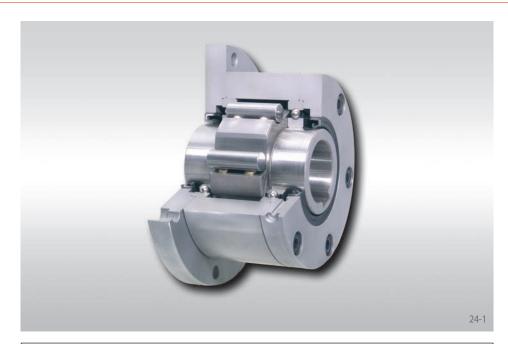
Rueda libre	Tipo	Par nominal M _N Nm	Revolucio Aro interior gira libre/ adelanta min ⁻¹	nes máx. Aro exterior gira libre/ adelanta min ⁻¹	Tipo	Par nominal M _N Nm	Revolucio Aro interior gira libre/ adelanta min ⁻¹	Aro exterior gira libre/ adelanta min ⁻¹	Tipo	Par nominal M _N Nm	Velocidad de despegue aro interior min ⁻¹	Revolucio Aro interior gira libre/ adelanta min ⁻¹		Tipo	Par nominal M _N Nm	Velocidad de despegue aro exterior min ⁻¹	Revolucio Aro exterior gira libre/ adelanta min-1	ones máx. Aro interior arrastra min ⁻¹
FBF 24	CF	45	4800	5 500	CFT	45	4800	5 5 0 0										
FBF 29	CF	80	3 5 0 0	4000	CFT	80	3 500	4000										
FBF 37	SF	200	2500	2600	SFT	200	2500	2600						CZ	110	850	3 0 0 0	340
FBF 44	SF	320	1 900	2 2 0 0	SFT	320	1 900	2 2 0 0	DX	130	860	1 900	344	CZ	180	800	2600	320
FBF 57	SF	630	1 400	1750	SFT	630	1 400	1750	DX	460	750	1 400	300	LZ	430	1400	2100	560
FBF 72	SF	1250	1120	1600	SFT	1250	1120	1600	DX	720	700	1 150	280	LZ	760	1220	1800	488
FBF 82	SF	1800	1 0 2 5	1450	SFT	1800	1 0 2 5	1 450	DX	1000	670	1 050	268	SFZ	1700	1450	1600	580
FBF 107	SF	2500	880	1 2 5 0	SFT	2500	880	1 250	DX	1500	610	900	244	SFZ	2500	1300	1350	520
FBF 127	SF	5 0 0 0	800	1150	SFT	5 0 0 0	800	1150	SX	3400	380	800	152	SFZ	5 0 0 0	1 200	1200	480
FBF 140	SF	10000	750	1100	SFT	10000	750	1100	SX	7500	320	750	128	SFZ	10000	950	1150	380
FBF 200	SF	20 000	630	900	SFT	20 000	630	900	SX	23 000	240	630	96	SFZ	20 000	680	900	272
FBF 270	SF	40 000	510	750	SFT	40 000	510	750	UX	40 000	210	510	84	SFZ	37500	600	750	240
FBF 340	SF	80000	460	630	SFT	80000	460	630										
FBF 440	SF	160 000	400	550	SFT	160 000	400	550										

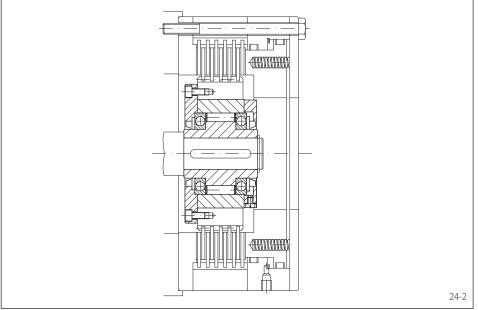
El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario.

		Diám	etro d	A	D	F	G**	1	N	Т	Z**	Peso
Rueda	alibre	Estándar	máx.		J	·	· ·	-		·	-	. 630
		mm	mm	mm	mm	mm		mm	mm	mm		kg
FBF	24	12	14*	85	62	1,0	M 5	50	10	72	3	1,1
FBF	29	15	17*	92	68	1,0	M 5	52	11	78	3	1,3
FBF	37	20	22*	98	75	0,5	M 5	48	11	85	8	1,5
FBF	44	25*	25*	118	90	0,5	M 6	50	12	104	8	2,3
FBF	57	30	32*	128	100	0,5	M 6	65	12	114	12	3,2
FBF	72	40	42*	160	125	1,0	M 8	74	14	142	12	5,8
FBF	82	50*	50*	180	135	2,0	M 10	75	16	155	8	7,0
FBF	107	60	65*	214	170	2,5	M 10	90	18	192	10	12,6
FBF	127	70	75*	250	200	3,0	M 12	112	20	225	12	21,4
FBF	140	90	95*	315	250	5,0	M 16	150	22	280	12	46,0
FBF	200	120	120	370	300	5,0	M 16	160	25	335	16	68,0
FBF	270	140	150	490	400	6,0	M 20	212	32	450	16	163,0
FBF	340	180	240	615	500	7,5	M 24	265	40	560	18	300,0
FBF	440	220	300	775	630	7,5	M 30	315	50	710	18	564,0

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.


* Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.


** Z = número de agujeros de fijación en el círculo primitivo T para tornillos G (DIN EN ISO 4762).

Ruedas libres completas FGR ... R A1A2

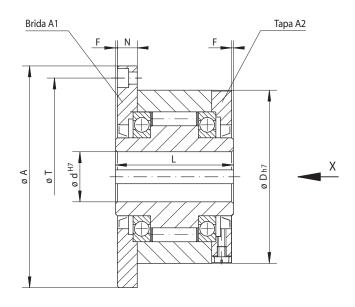
RINGSPANN®

con brida de amarre y con rodillos de bloqueo

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características


Las ruedas libres completas FGR ... R A1A2 con brida de amarre son ruedas libres con elementos de bloqueo, equipadas con rodamientos de bolas y retenes. Previstas para la lubricación con aceite. Pares nominales hasta 68 000 Nm.

Diámetros interiores hasta 150 mm.

Ejemplo de aplicación

Rueda libre FGR 50 R A1A2, utilizada en un freno de discos múltiples cargado por resorte y de apertura hidráulica para accionamientos para devanadoras. Al elevar la carga, el freno está cerrado y el aro interior gira libre. Durante la parada, la rueda libre tiene la función de un antirretroceso. La carga se retiene mediante el freno y la rueda libre bloqueada. En el descenso se realiza la apertura controlada del freno y la carga baja a través de la rueda libre bloqueada. El uso de la rueda libre facilita un control hidráulico simplificado y económico.

con brida de amarre y con rodillos de bloqueo

25-1

ore de avance gue por adel. Intirretroceso	Estándar Para uso universal	Dimensiones
Rueda lib Embra		

				Revolucio	nes máx.	Diámetro	Α	D	F	G*	L	N	T	Z*	Peso
		Combinacio-	Par	Aro interior	Aro exterior	d									
		nes de bridas	nominal	gira libre/	gira libre/										
Rueda libre	Tipo	y tapas	M_N	adelanta	adelanta										
			Nm	min ⁻¹	min ⁻¹	mm	mm	mm	mm		mm	mm	mm		kg
FGR 12	R	A1A2	55	2 500	5 400	12	85	62	1	M 5	42	10,0	72	3	1,2
FGR 15	R	A1A2	130	2 200	4800	15	92	68	1	M 5	52	11,0	78	3	1,6
FGR 20	R	A1A2	180	1 900	4100	20	98	75	1	M 5	57	10,5	85	4	1,9
FGR 25	R	A1A2	290	1 550	3 3 5 0	25	118	90	1	M 6	60	11,5	104	4	2,9
FGR 30	R	A1A2	500	1 400	3 0 5 0	30	128	100	1	M 6	68	11,5	114	6	3,9
FGR 35	R	A1A2	730	1 300	2850	35	140	110	1	M 6	74	13,5	124	6	4,9
FGR 40	R	A1A2	1 000	1 150	2 5 0 0	40	160	125	1	M 8	86	15,5	142	6	7,5
FGR 45	R	A1A2	1150	1 100	2400	45	165	130	1	M 8	86	15,5	146	8	7,8
FGR 50	R	A1A2	2100	950	2050	50	185	150	1	M 8	94	14,0	166	8	10,8
FGR 55	R	A1A2	2600	900	1 900	55	204	160	1	M 10	104	18,0	182	8	14,0
FGR 60	R	A1A2	3500	800	1800	60	214	170	1	M 10	114	17,0	192	10	16,8
FGR 70	R	A1A2	6000	700	1600	70	234	190	1	M 10	134	18,5	212	10	20,8
FGR 80	R	A1A2	6800	600	1 400	80	254	210	1	M 10	144	21,0	232	10	27,0
FGR 90	R	A1A2	11000	500	1 300	90	278	230	1	M 12	158	20,5	254	10	40,0
FGR 100	R	A1A2	20 000	350	1 100	100	335	270	1	M 16	182	30,0	305	10	67,0
FGR 130	R	A1A2	31000	250	900	130	380	310	1	M 16	212	29,0	345	12	94,0
FGR 150	R	A1A2	68 000	200	700	150	485	400	1	M 20	246	32,0	445	12	187,0

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

La rueda libre con base, la brida, la tapa, los retenes y los tornillos se suministran sueltos. El cliente debe realizar el montaje de la rueda libre completa según el sentido de giro libre requerido. Previo a la puesta en servicio, la rueda libre debe llenarse con aceite de la calidad prescrita. A petición del cliente, la rueda libre completa puede suministrarse montada y provista de aceite.

La parte a instalar por el cliente, se centra en el diámetro exterior D y se une a la cara a través de la brida A1.

La tolerancia del eje debe ser ISO h6 o j6, la tolerancia del diámetro D o R para el centrado de la pieza complementaria debe ser ISO H7 o J7.

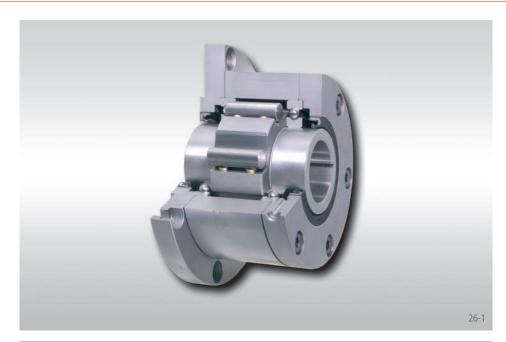
Ejemplo de pedido

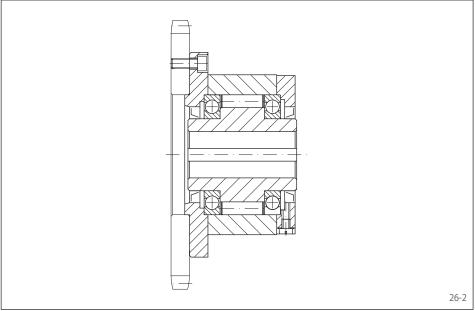
Rueda libre FGR 25 tipo estándar con brida A1 y tapa A2:

FGR 25 R A1A2

La rueda libre con base, la brida, la tapa, los retenes y los tornillos se suministran sueltos, si no se especifica lo contrario en el pedido.

Si desean que la rueda libre completa montada se suministre con llenado de aceite, rogamos lo indiquen en el pedido, al igual que el sentido de giro libre del aro interior visto en dirección X:


- · libre en sentido antihorario
- libre en sentido horario


^{*} Z = número de agujeros de fijación en el círculo primitivo T para tornillos G (DIN EN ISO 4762).

Ruedas libres completas FGR ... R A2A7

RINGSPANN®

con brida de amarre y con rodillos de bloqueo

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características


Las ruedas libres completas FGR ... R A2A7 con brida de amarre son ruedas libres con elementos de bloqueo, equipadas con rodamientos de bolas y retenes. Previstas para la lubricación con aceite. Pares nominales hasta 68 000 Nm.

Diámetros interiores hasta 150 mm.

Ejemplo de aplicación

Rueda libre completa FGR 50 R A2A7 en una unidad de alimentación de material para laminación. El accionamiento se transmite a través del aro interior de la rueda libre, que acciona los rodillos de alimentación de la rueda dentada. Por lo tanto el material de laminación se transporta con la ayuda de la rueda libre. Durante la entrega de material a la siguiente máquina, el material es capaz de adelantar a la unidad de accionamiento.

con brida de amarre y con rodillos de bloqueo

27-1

ore de avance gue por adel. Intirretroceso	Estándar Para uso universal	Dimensiones
Ruedalib Embrac		

				Revolucio	ones máx.	Diámetro	Α	D	F	G*	K	L	L1	N1	R	T	Z*	Peso
		Combinacio-	Par	Aro interior	Aro exterior	d												
		nes de bridas	nominal	gira libre/	gira libre/													
Rueda libre	Tipo	y tapas	M_N	adelanta	adelanta													
			Nm	min ⁻¹	min ⁻¹	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm		kg
FGR 12	R	A2A7	55	2 500	5 400	12	85	62	1	M 5	3,0	42	44	10,0	42	72	3	1,2
FGR 15	R	A2A7	130	2 200	4800	15	92	68	1	M 5	3,0	52	54	11,0	47	78	3	1,6
FGR 20	R	A2A7	180	1 900	4100	20	98	75	1	M 5	3,0	57	59	10,5	55	85	4	1,9
FGR 25	R	A2A7	290	1 550	3 3 5 0	25	118	90	1	M 6	3,0	60	62	11,5	68	104	4	2,9
FGR 30	R	A2A7	500	1 400	3 0 5 0	30	128	100	1	M 6	3,0	68	70	11,5	75	114	6	3,9
FGR 35	R	A2A7	730	1 300	2850	35	140	110	1	M 6	3,5	74	76	13,0	80	124	6	4,9
FGR 40	R	A2A7	1 000	1 150	2500	40	160	125	1	M 8	3,5	86	88	15,0	90	142	6	7,5
FGR 45	R	A2A7	1150	1 100	2400	45	165	130	1	M 8	3,5	86	88	15,0	95	146	8	7,8
FGR 50	R	A2A7	2100	950	2050	50	185	150	1	M 8	4,0	94	96	13,0	110	166	8	10,8
FGR 55	R	A2A7	2600	900	1 900	55	204	160	1	M 10	4,0	104	106	17,0	115	182	8	14,0
FGR 60	R	A2A7	3500	800	1800	60	214	170	1	M 10	4,0	114	116	16,0	125	192	10	16,8
FGR 70	R	A2A7	6000	700	1 600	70	234	190	1	M 10	4,0	134	136	17,5	140	212	10	20,8
FGR 80	R	A2A7	6800	600	1 400	80	254	210	1	M 10	4,0	144	146	20,0	160	232	10	27,0
FGR 90	R	A2A7	11000	500	1 300	90	278	230	1	M 12	4,5	158	160	19,0	180	254	10	40,0
FGR 100	R	A2A7	20 000	350	1 100	100	335	270	1	M 16	5,0	182	184	28,0	210	305	10	67,0
FGR 130	R	A2A7	31 000	250	900	130	380	310	1	M 16	5,0	212	214	27,0	240	345	12	94,0
FGR 150	R	A2A7	68 000	200	700	150	485	400	1	M 20	5,0	246	248	30,0	310	445	12	187,0

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

La rueda libre con base, la brida, la tapa, los retenes y los tornillos se suministran sueltos. El cliente debe realizar el montaje de la rueda libre completa según el sentido de giro libre requerido. Previo a la puesta en servicio, la rueda libre debe llenarse con aceite de la calidad prescrita. A petición del cliente, la rueda libre completa puede suministrarse montada y provista de aceite.

La parte a instalar por el cliente, se centra en el diámetro R y se atornilla a la cara a través de la brida A7. Por lo tanto, ruedas libres completas FGR ... R A2A7 son particularmente adecuadas para la fijación de piezas pequeñas y estrechas (ruedas dentadas, engranajes, etc.).

La tolerancia del eje debe ser ISO h6 o j6, la tolerancia del diámetro D o R para el centrado de la pieza complementaria debe ser ISO H7 o J7.

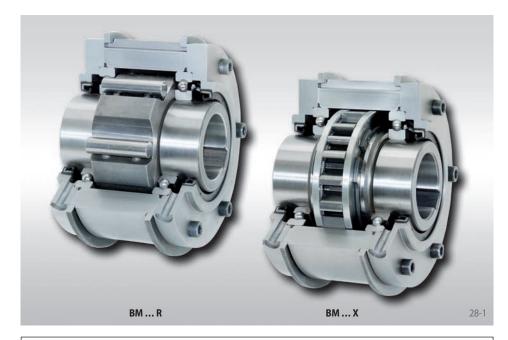
Ejemplo de pedido

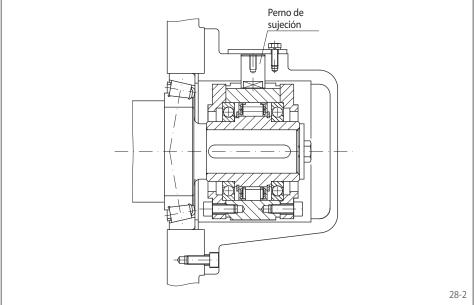
Rueda libre FGR 25 tipo estándar con tapa A2 y brida A7:

FGR 25 R A2A7

La rueda libre con base, la brida, la tapa, los retenes y los tornillos se suministran sueltos, si no se especifica lo contrario en el pedido.

Si desean que la rueda libre completa montada se suministre con llenado de aceite, rogamos lo indiquen en el pedido, al igual que el sentido de giro libre del aro interior visto en dirección X:


- · libre en sentido antihorario
- libre en sentido horario


^{*} Z = número de agujeros de fijación en el círculo primitivo T para tornillos G (DIN EN ISO 4762).

Ruedas libres completas BM

RINGSPANN®

con unión de chaveta en el aro exterior y con rodillos de bloqueo o despegue X

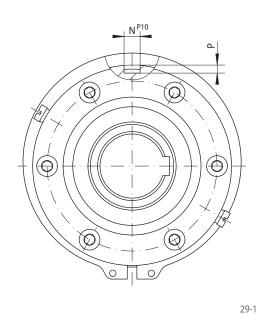
Aplicación como

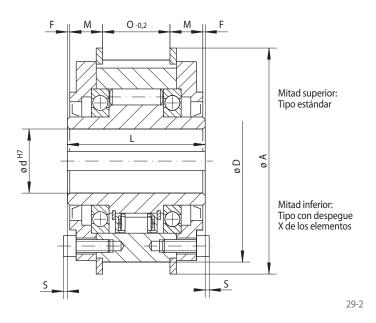
- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las ruedas libres completas BM son ruedas libres con rodamientos de bolas sellados. Se suministran provistas de aceite y listas para su instalación.

Además del tipo estándar está disponible el modelo con despegue X de los elementos de bloqueo, para un funcionamiento en vacío libre de desgaste, cuando el aro interior gira a altas velocidades.
Pares nominales hasta 57 500 Nm.


metros estándar, estarán disponibles a corto plazo.


Diámetros interiores hasta 150 mm. Otros diá-

Ejemplo de aplicación

Rueda libre completa BM 60 SX utilizada como antirretroceso, ubicada en el extremo del eje intermedio de un engranaje recto. La rueda libre se utiliza sin los retenes en ambos lados, el suministro de aceite se realiza a través del sistema de lubricación de la caja de cambios. En la ranura de chaveta encastra un perno de sujeción radial, que soporta el par recuperador en la carcasa fija. Para los trabajos de mantenimiento, la instalación puede girarse en ambos sentidos, retirando el perno de sujeción radial. Dadas las altas revoluciones del eje en funcionamiento normal (en vacío), se utiliza el tipo con despegue X. En giro libre, los elementos de bloqueo de forma trabajan sin contacto y, por tanto, libres de desgaste.

con unión de chaveta en el aro exterior y con rodillos de bloqueo o despegue X

re de avance gue por adel. ntirretroceso	Estándar Para uso universal	Con despegue X Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro interior a velocidad alta	Dimensiones
Rueda lib Embra			

				Revolucio	nes máx.				Revolucio	ones máx.	Diám	netro	Α	D	F	L	M	N	0	Р	S	Peso
			Par	Aro interior	Aro exterior		Par	Velocidad de	Aro interior	Aro exterior	C	ŀ										
			nominal	gira libre/	gira libre/		nominal	despegue	gira libre/	arrastra												
Rueda	libre	Tipo	M _N	adelanta	adelanta	Tipo	MN	aro interior	adelanta		Estándar	máx.										
			Nm	min ⁻¹	min ⁻¹		Nm	min ⁻¹	min ⁻¹	min ⁻¹	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
BM	12	R	150	1 750	3500						15	15	84	70	0,75	68	15,75	5	35	3,0	3,0	1,5
BM	15	R	230	1 650	3300						20	20	94	80	0,75	70	15,75	5	37	3,0	3,0	2,0
BM	18	R	340	1 5 5 0	3100						25	25	111	95	0,75	70	16,25	8	36	4,0	3,0	2,9
BM	20	R	420	1 450	2900	DX	420	750	1700	300	30	30	121	105	0,75	77	20,25	8	35	4,0	2,5	3,8
BM	25	R	800	1 250	2500	DX	700	700	1600	280	40	40	144	125	0,75	93	22,25	10	47	5,0	2,5	6,6
BM	28	R	1 200	1 100	2200						45	45	155	135	0,75	95	23,25	12	47	5,0	4,0	7,8
BM	30	R	1600	1 000	2000	DX	1250	630	1600	252	50	50	171	150	0,75	102	24,25	12	52	5,0	4,0	10,3
BM	35	R	1800	900	1800						55	55	182	160	0,75	110	24,25	14	60	5,5	4,0	12,5
BM	40	R	3500	800	1600	SX	1900	430	1500	172	60	60	202	180	0,75	116	25,25	16	64	6,0	6,5	17,4
BM	45	R	7100	750	1500	SX	2300	400	1500	160	70	70	218	195	1,25	130	24,75	20	78	7,5	8,5	22,4
BM	50	R	7500	700	1400						75	75	227	205	1,25	132	26,75	20	76	7,5	8,5	24,2
BM	52	R	9300	650	1300	SX	5600	320	1500	128	80	80	237	215	1,75	150	33,75	25	79	9,0	8,5	31,1
BM	55	R	12500	550	1100	SX	7700	320	1 2 5 0	128	90	90	267	245	1,75	170	35,25	25	96	9,0	6,5	45,6
BM	60	R	14500	500	1 000	SX	14500	250	1100	100	100	105	314	290	1,75	206	40,25	28	122	10,0	6,5	78,2
BM	70	R	22500	425	850	SX	21 000	240	1 000	96	120	120	350	320	1,25	215	44,75	28	123	10,0	9,0	93,4
BM	80	R	25 000	375	750						130	130	380	350	1,75	224	46,25	32	128	11,0	8,5	116,8
BM	90	R	33500	350	700						140	140	400	370	2,75	236	49,25	32	132	11,0	7,5	136,7
BM	95	R	35000	300	600						150	150	420	390	2,75	249	53,25	36	137	12,0	6,5	159,3
BM	100	R	57500	250	500	UX	42500	210	750	84	150	150	450	410	3,75	276	56,25	36	156	12,0	11,5	198,4

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo. El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

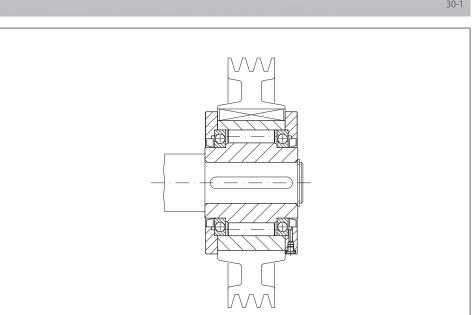
Instrucciones de montaje

La pieza complementaria por parte del cliente se une con el aro exterior mediante una chaveta. El cliente suministrará la chaveta para el montaje de la pieza complementaria.

La tolerancia del eje debe ser ISO h6 o j6, la tolerancia del diámetro D para el centrado de la pieza complementaria debe ser ISO H7 o J7.

Ejemplo de pedido

Rueda libre BM 20 tipo estándar con un diámetro interior de 30 mm:


• BM 20 R, d = 30 mm

Ruedas libres completas FGRN ... R A5A6

RINGSPANN®

con unión de chaveta en el aro exterior y con rodillos de bloqueo

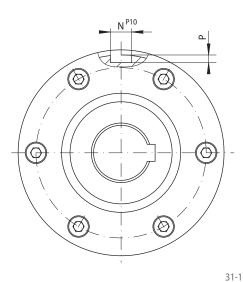
Aplicación como

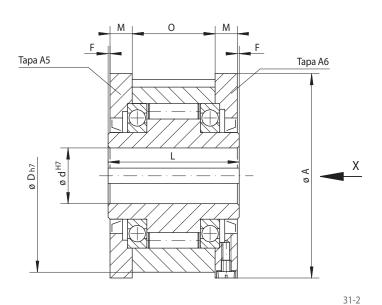
- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las ruedas libres completas FGRN ... R A5A6 son ruedas libres con rodillos de bloqueo, equipadas con rodamientos de bolas y retenes, para lubricación de aceite.

Pares nominales hasta 6 800 Nm.


Diámetros interiores hasta 80 mm.


Ejemplo de aplicación

30-2

Rueda libre completa FGRN 45 R utilizada como embrague por adelantamiento en el extremo del eje de un ventilador móvil. En el funcionamiento normal, el ventilador se acciona a través de una correa trapezoidal mediante un motor diesel, trabajando la rueda libre en arrastre. Al desconectar el motor, la rueda libre automáticamente desacopla la masa de inercia del ventilador del accionamiento. En este estado de funcionamiento, el aro interior adelanta al aro exterior fijado y la rueda libre funciona en vacío.

con unión de chaveta en el aro exterior y con rodillos de bloqueo

31-1

Embra	ore de avance gue por adel. Intirretroceso	Estándar Para uso universal			Dimen	siones		
	Ruedalik							

				Revolucio	Revoluciones máx.		Α	D	F	L	M	N	Р	0	Peso
			Par	Aro interior	Aro exterior	d									
D 1 111	-	Combinacio-	nominal	gira libre/	gira libre/										
Rueda libre	Tipo	nes de tapas	M _N Nm	adelanta min ⁻¹	adelanta min ⁻¹	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
									111111						
FGRN 12	R	A5A6	55	2 500	5 400	12	70	62	1	42	10,0	4	2,5	20	1,2
FGRN 15	R	A5A6	130	2 200	4800	15	76	68	1	52	11,0	5	3,0	28	1,6
FGRN 20	R	A5A6	180	1 900	4100	20	84	75	1	57	10,5	6	3,5	34	1,9
FGRN 25	R	A5A6	290	1 550	3 3 5 0	25	99	90	1	60	11,5	8	4,0	35	2,9
FGRN 30	R	A5A6	500	1 400	3 050	30	109	100	1	68	11,5	8	4,0	43	3,9
FGRN 35	R	A5A6	730	1 300	2850	35	119	110	1	74	13,5	10	5,0	45	4,9
FGRN 40	R	A5A6	1000	1 150	2500	40	135	125	1	86	15,5	12	5,0	53	7,5
FGRN 45	R	A5A6	1150	1 100	2400	45	140	130	1	86	15,5	14	5,5	53	7,8
FGRN 50	R	A5A6	2100	950	2050	50	160	150	1	94	14,0	14	5,5	64	10,8
FGRN 55	R	A5A6	2600	900	1 900	55	170	160	1	104	18,0	16	6,0	66	14,0
FGRN 60	R	A5A6	3500	800	1 800	60	182	170	1	114	17,0	18	7,0	78	16,8
FGRN 70	R	A5A6	6000	700	1 600	70	202	190	1	134	18,5	20	7,5	95	20,8
FGRN 80	R	A5A6	6800	600	1 400	80	222	210	1	144	21,0	22	9,0	100	27,0

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

La rueda libre con base, la tapa, los retenes y los tornillos se suministran sueltos. El cliente debe realizar el montaje de la rueda libre completa según el sentido de giro libre requerido. Previo a la puesta en servicio, la rueda libre debe llenarse con aceite de la calidad prescrita. A petición del cliente, la rueda libre completa puede suministrarse montada y provista de aceite.

La pieza complementaria por parte del cliente se une con el aro exterior mediante una chaveta. El cliente suministrará la chaveta para el montaje de la pieza complementaria.

La tolerancia del eje debe ser ISO h6 o j6, la tolerancia del diámetro D para el centrado de la pieza complementaria debe ser ISO H7 o J7.

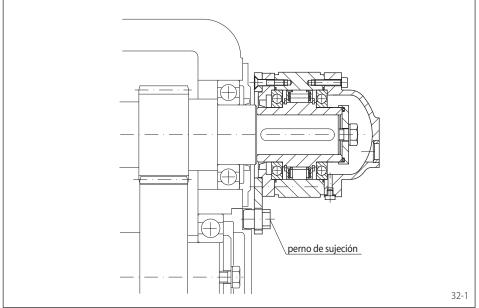
Ejemplo de pedido

Rueda libre FGRN 60 tipo estándar con tapa A5 y tapa A6:

FGRN 60 R A5A6

La rueda libre con base, la tapa, los retenes y los tornillos se suministran sueltos, si no se especifica lo contrario en el pedido.

Si desean que la rueda libre completa montada se suministre con llenado de aceite, rogamos lo indiquen en el pedido. Rogamos que en sus pedidos indiquen adicionalmente el sentido de giro libre del aro interior visto en dirección X:


- · libre en sentido antihorario
- libre en sentido horario

Ruedas libres completas BA

con palanca con rodillos de bloqueo o despegue X

Aplicación como

Antirretroceso

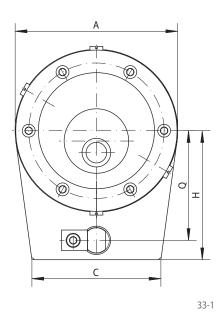
Características

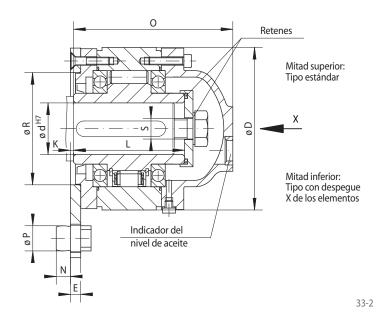
Las ruedas libres completas BA con palanca son ruedas libres con rodillos de bloqueo, equipadas con rodamientos de bolas y retenes.

Las ruedas libres BA están provistas de una tapa de cierre y se montan en el muñón del eje. Se rellena con aceite después de su montaje en el muñón del

Además del tipo estándar está disponible el modelo con despegue X de los elementos de bloqueo, para un funcionamiento en vacío libre de desgaste, cuando el aro interior gira a altas velocidades.

Pares nominales hasta 57 500 Nm.


Diámetros interiores hasta 150 mm. Otros diámetros estándar, estarán disponibles a corto plazo.


Ejemplo de aplicación

Rueda libre completa BA 45 SX utilizada como antirretroceso, ubicada en el extremo del eje intermedio de un engranaje recto. El par recuperador es soportado por la palanca con perno de sujeción en la carcasa de la caja de cambios. El eje puede girarse en ambos sentidos, retirando el perno de sujeción.

Dadas las altas revoluciones del eje en funcionamiento normal (en vacío), se utiliza el tipo con despegue X. En funcionamiento en vacío, los elementos de bloqueo de forma trabajan sin contacto y, por tanto, libres de desgaste.

con palanca con rodillos de bloqueo o despegue X

ntirretroceso	Con despegue X Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro interior a velocidad alta	
4		

				Revoluciones			Velocidad de	Revoluciones	Diám	etro	Α	С	D	Е	Н	K	L	N	0	Р	Q	R	S	Peso
			Par	máx.		Par	despegue	máx.	C														para	
			nominal	Aro interior		nominal	aro	Aro interior	For Condens														Tornillo	
Ruedal	ibre	Tipo	M _N	gira libre	Tipo	M _N	interior	gira libre	Estándar	máx.														
			Nm	min ⁻¹		Nm	min ⁻¹	min ⁻¹	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		kg
BA	12	R	150	1750					15	15	71	50	71	8	53	4,5	68	9	91	11,5	42	45	M 6	2
BA	15	R	230	1650					20	20	81	60	81	8	62	4,5	70	9	93	13,5	50	50	M 6	3
BA	18	R	340	1550					25	25	96	70	96	8	73	4,5	70	9	96	15,5	60	60	M 10	4
BA	20	R	420	1450	DX	400	750	1700	30	30	110	90	106	8	80	2,5	77	11	104	19,5	65	70	M 10	5
BA	25	R	800	1 250	DX	650	700	1600	40	40	126	100	126	8	90	2,5	93	11	125	19,5	75	80	M 12	8
BA	28	R	1 200	1100					45	45	140	110	136	10	105	3,5	95	14	129	24,5	85	90	M 12	9
BA	30	R	1 600	1 000	DX	1 100	630	1600	50	50	155	120	151	10	120	3,5	102	16	140	27,5	95	100	M 16	12
BA	35	R	1 800	900					55	55	170	130	161	10	140	3,5	110	19	151	33,5	112	110	M 16	15
BA	40	R	3 500	800	SX	1 400	430	1500	60	60	190	150	181	12	160	5,5	116	22	160	37,5	130	120	M 16	20
BA	45	R	7 100	750	SX	2 300	400	1 500	70	70	210	160	196	14	175	7,0	130	26	176	41,5	140	130	M 16	25
BA	50	R	7 500	700					75	75	220	180	206	14	185	7,0	132	26	178	41,5	150	140	M 16	30
BA	52	R	9 300	650	SX	4 900	320	1500	80	80	230	190	216	14	200	4,5	150	26	208	41,5	160	150	M 20	35
BA	55	R	12 500	550	SX	6 500	320	1 2 5 0	90	90	255	200	246	15	210	3,5	170	29	228	49,5	170	160	M 20	50
BA	60	R	14 500	500	SX	14 500	250	1100	100	105	295	220	291	20	250	8,5	206	35	273	60,0	200	190	M 24	91
BA	70	R	22 500	425	SX	21 000	240	1 000	120	120	335	260	321	25	280	14,0	215	39	291	65,0	225	210	M 24	115
BA	80	R	25 000	375					130	130	360	280	351	30	280	18,5	224	39	302	65,0	225	220	M 24	150
BA	90	R	33 500	350					140	140	385	300	371	35	310	22,5	236	55	314	70,0	250	240	M 30	180
BA	95	R	35 000	300					150	150	400	350	391	40	310	27,5	249	55	337	70,0	250	250	M 30	225
BA 1	00	R	57 500	250	UX	42 500	210	750	150	150	420	380	411	45	345	31,5	276	60	372	80,0	280	270	M 30	260

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo. El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

El soporte del momento de torsión se realiza mediante la palanca con perno de sujeción. El perno de sujeción encastra en una ranura o un agujero en el bastidor de la máquina. Debe tener de 0,5 a 2 mm de juego axial y radial.

Retirando el perno de sujeción de la palanca, el eje puede ser girado en ambas direcciones.

La tolerancia del eje debe ser ISO h6 o j6.

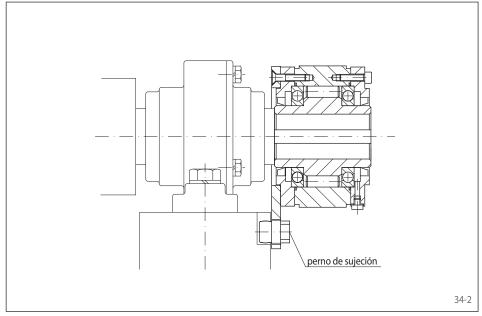
En el caso de ruedas libres BA, el aro interior debe ser asegurado axialmente con el disco de retención suministrado. Antes de la puesta en marcha, la rueda libre debe ser llenada con aceite de la calidad especificada.

Ejemplo de pedido

Rueda libre BA 30 con despegue X de los elementos de bloqueo y un diámetro interior de 50 mm:

• BA 30 DX, d = 50 mm

Rogamos que en sus pedidos indiquen adicionalmente el sentido de giro libre del aro interior visto en dirección X:


- libre en sentido antihorario
- libre en sentido horario

Ruedas libres completas BC

con palanca y con rodillos de bloqueo o despegue X

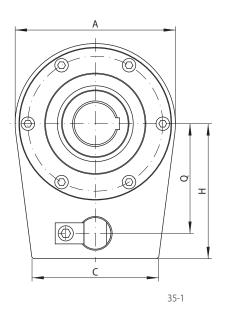
Aplicación como

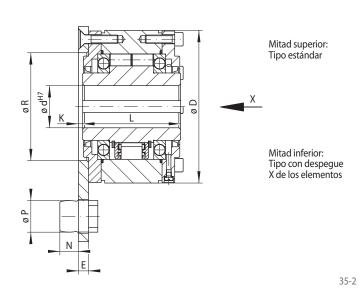
Antirretroceso

Características

Las ruedas libres completas BC con palanca son ruedas libres con rodillos de bloqueo, equipadas con rodamientos de bolas y retenes.

Las ruedas libres BC se suministran provistas de aceite y preparadas para su instalación. Para montaje sobre ejes continuos o en el muñón del eje. Además del tipo estándar está disponible el modelo con despegue X de los elementos de bloqueo, para un funcionamiento en vacío libre de desgaste, cuando el aro interior gira a altas velocidades.


Pares nominales hasta 57 500 Nm.


Diámetros interiores hasta 150 mm. Otros diámetros estándar, estarán disponibles a corto plazo.

Ejemplo de aplicación

Rueda libre BC 90 R utilizada como antirretroceso en el extremo de un rodillo de avance. El par recuperador es soportado por la palanca con perno de sujeción en la base. El rodillo puede girarse en ambos sentidos, retirando el perno de sujeción.

con palanca y con rodillos de bloqueo o despegue X

ntirretroceso	Con despegue X Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro interior a velocidad alta	
<		

			Par	Revoluciones máx.		Par	Velocidad de despegue	Revoluciones máx.	Diám c		Α	С	D	E	Н	K	L	N	0	Р	Q	R	S para	Peso
			nominal	Aro interior		nominal	aro	Aro interior	F . ()	. ,													Tornillo	
Rueda	libre	Tipo	M _N	gira libre	Tipo	M _N	interior	gira libre	Estándar	máx.														
			Nm	min ⁻¹		Nm	min ⁻¹	min ⁻¹	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		kg
BC	12	R	150	1750					15	15	71	50	71	8	53	4,5	68	9	91	11,5	42	45	M 6	2
BC	15	R	230	1650					20	20	81	60	81	8	62	4,5	70	9	93	13,5	50	50	M 6	3
BC	18	R	340	1550					25	25	96	70	96	8	73	4,5	70	9	96	15,5	60	60	M 10	4
BC	20	R	420	1450	DX	400	750	1700	30	30	110	90	106	8	80	2,5	77	11	104	19,5	65	70	M 10	5
BC	25	R	800	1 250	DX	650	700	1600	40	40	126	100	126	8	90	2,5	93	11	125	19,5	75	80	M 12	8
BC	28	R	1 200	1100					45	45	140	110	136	10	105	3,5	95	14	129	24,5	85	90	M 12	9
BC	30	R	1 600	1 000	DX	1 100	630	1600	50	50	155	120	151	10	120	3,5	102	16	140	27,5	95	100	M 16	12
BC	35	R	1 800	900					55	55	170	130	161	10	140	3,5	110	19	151	33,5	112	110	M 16	15
BC	40	R	3 500	800	SX	1 400	430	1500	60	60	190	150	181	12	160	5,5	116	22	160	37,5	130	120	M 16	20
BC	45	R	7 100	750	SX	2 300	400	1500	70	70	210	160	196	14	175	7,0	130	26	176	41,5	140	130	M 16	25
BC	50	R	7 500	700					75	75	220	180	206	14	185	7,0	132	26	178	41,5	150	140	M 16	30
BC	52	R	9 300	650	SX	4 900	320	1500	80	80	230	190	216	14	200	4,5	150	26	208	41,5	160	150	M 20	35
BC	55	R	12 500	550	SX	6 500	320	1 2 5 0	90	90	255	200	246	15	210	3,5	170	29	228	49,5	170	160	M 20	50
BC	60	R	14 500	500	SX	14 500	250	1100	100	105	295	220	291	20	250	8,5	206	35	273	60,0	200	190	M 24	91
BC	70	R	22 500	425	SX	21 000	240	1000	120	120	335	260	321	25	280	14,0	215	39	291	65,0	225	210	M 24	115
BC	80	R	25 000	375					130	130	360	280	351	30	280	18,5	224	39	302	65,0	225	220	M 24	150
BC	90	R	33 500	350					140	140	385	300	371	35	310	22,5	236	55	314	70,0	250	240	M 30	180
BC	95	R	35 000	300					150	150	400	350	391	40	310	27,5	249	55	337	70,0	250	250	M 30	225
BC	100	R	57 500	250	UX	42 500	210	750	150	150	420	380	411	45	345	31,5	276	60	372	80,0	280	270	M 30	260

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo. El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

El soporte del momento de torsión se realiza mediante la palanca con perno de sujeción. El perno de sujeción encastra en una ranura o un agujero en el bastidor de la máquina. Debe tener de 0,5 a 2 mm de juego axial y radial.

Retirando el perno de sujeción de la palanca, el eje puede ser girado en ambas direcciones.

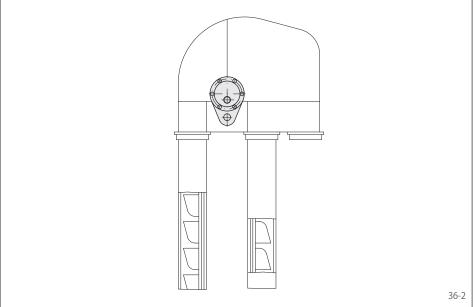
La tolerancia del eje debe ser ISO h6 o j6. Las ruedas libres BC se suministran provistas de aceite y preparadas para su montaje.

Ejemplo de pedido

Rueda libre BC 30, tipo estándar y diámetro interior de 50 mm.

• BC 30 R.d = 50 mm

Rogamos que en sus pedidos indiquen adicionalmente el sentido de giro libre del aro interior visto en dirección X:


- libre en sentido antihorario
- libre en sentido horario

Ruedas libres completas FGR ... R A3A4

RINGSPANN®

con palanca y con rodillos de bloqueo

Aplicación como

Antirretroceso

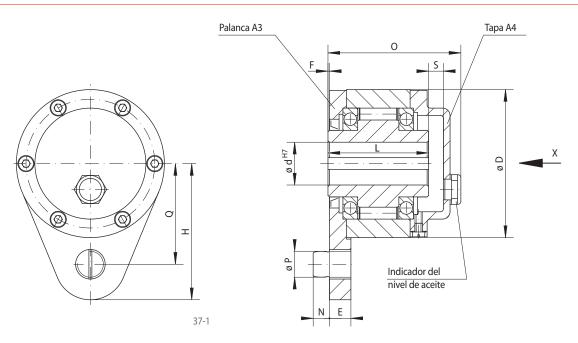
en aplicaciones a revoluciones bajas hasta medias en operación de giro libre.

Características

Las ruedas libres completas FGR...R A3A4 con palanca son ruedas libres con elementos de bloqueo, equipadas con rodamientos de bolas y retenes, previstas para la lubricación de aceite.

Las ruedas libres FGR ... R A3A4 están provistas de una tapa de cierre para montaje en el muñón del

Se rellena con aceite después del montaje de la rueda libre.


Pares nominales hasta 68 000 Nm. Diámetros interiores hasta 150 mm.

Ejemplo de aplicación

Rueda libre completa FGR 45 R A3A4 utilizada como antirretroceso, ubicada en el extremo opuesto del árbol de accionamiento de un transportador de cangilones. Al parar el motor, el transportador debe retenerse firmemente para impedir que el material transportado provoque el retroceso de la cinta, accionando así el motor a alta velocidad. El par recuperador es soportado por la palanca con perno de sujeción en la carcasa de la caja de cambios. El eje puede girarse en ambos sentidos, retirando el perno de sujeción.

37-2

con palanca y con rodillos de bloqueo

ntirretroceso	Estándar Para uso universal	Dimensiones
~ [

				Revoluciones	Diámetro	D	E	F	Н	L	N	0	Р	Q	S	Peso
			Par	máx.	d											
	_	Combinaciones de	nominal	Aro interior												
Rueda libre	Tipo	palancas y tapas	M _N	gira libre												
			Nm	min ⁻¹	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
FGR 12	R	A3A4	55	2 500	12	62	13	1	51	42	10	64	10	44	12	1,4
FGR 15	R	A3A4	130	2 200	15	68	13	1	62	52	10	78	10	47	12	1,8
FGR 20	R	A3A4	180	1 900	20	75	15	1	72	57	11	82	12	54	12	2,3
FGR 25	R	A3A4	290	1 550	25	90	17	1	84	60	14	85	16	62	12	3,4
FGR 30	R	A3A4	500	1 400	30	100	17	1	92	68	14	95	16	68	12	4,5
FGR 35	R	A3A4	730	1 300	35	110	22	1	102	74	18	102	20	76	12	5,6
FGR 40	R	A3A4	1 000	1 150	40	125	22	1	112	86	18	115	20	85	13	8,5
FGR 45	R	A3A4	1 150	1 100	45	130	26	1	120	86	22	115	25	90	14	8,9
FGR 50	R	A3A4	2 100	950	50	150	26	1	135	94	22	123	25	102	15	12,8
FGR 55	R	A3A4	2 600	900	55	160	30	1	142	104	25	138	32	108	18	16,2
FGR 60	R	A3A4	3 500	800	60	170	30	1	145	114	25	147	32	112	18	19,3
FGR 70	R	A3A4	6 000	700	70	190	35	1	175	134	30	168	38	135	17	23,5
FGR 80	R	A3A4	6 800	600	80	210	35	1	185	144	30	178	38	145	17	32,0
FGR 90	R	A3A4	11 000	500	90	230	45	1	205	158	40	192	50	155	17	47,2
FGR 100	R	A3A4	20 000	350	100	270	45	1	230	182	40	217	50	180	17	76,0
FGR 130	R	A3A4	31 000	250	130	310	60	1	268	212	55	250	68	205	18	110,0
FGR 150	R	A3A4	68 000	200	150	400	60	1	325	246	55	286	68	255	20	214,0

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo. El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

El soporte del momento de torsión se realiza mediante la palanca con perno de sujeción. El perno de sujeción encastra en una ranura o un agujero en el bastidor de la máquina. Debe tener de 0,5 a 2 mm de juego axial y radial. Retirando el perno de sujeción de la palanca, el eje puede ser girado en ambas direcciones.

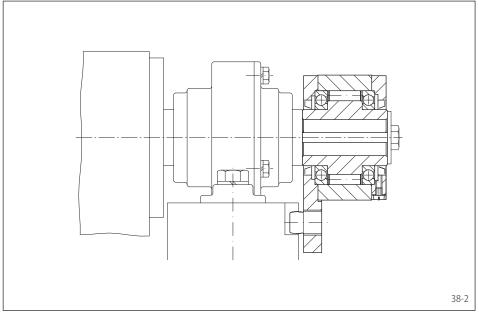
La tolerancia del eje debe ser ISO h6 o j6.

En el caso de ruedas libres FGR ... R A3A4, el aro interior debe ser asegurado axialmente con el disco de retención suministrado. Antes de la puesta en marcha, la rueda libre debe ser llenada con aceite de la calidad especificada.

Ejemplo de pedido

La rueda libre base FGR, la palanca, los retenes y los tornillos se suministran sueltos, si no se especifica lo contrario en el pedido.

Rueda libre FGR 25, estándar con palanca A3 y tapa A4:


FGR 25 R A3A4

Ruedas libres completas FGR ... R A2A3

RINGSPANN®

con palanca y con rodillos de bloqueo

Aplicación como

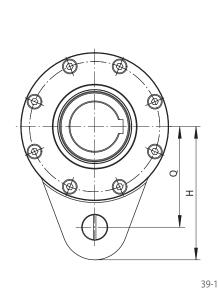
Antirretroceso

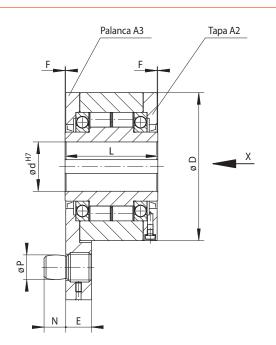
en aplicaciones a revoluciones bajas hasta medias en operación de giro libre.

Características

Las ruedas libres completas FGR...R A2A3 con palanca son ruedas libres con elementos de bloqueo, equipadas con rodamientos de bolas y retenes, previstas para la lubricación de aceite.

Las ruedas libres FGR ... R A2A3 se montan sobre ejes continuos o en el muñón del eje.


Pares nominales hasta 68 000 Nm.


Diámetros interiores hasta 150 mm.

Ejemplo de aplicación

Rueda libre completa FGR ... R A2A3 como antirretroceso en el extremo de una cinta tansportadora inclinada. El par recuperador es soportado por el brazo de palanca con perno de sujeción en la base. Es posible el movimiento de la cinta transportadora en ambas direcciones, al retirar el perno de sujeción.

con palanca y con rodillos de bloqueo

39-2

ntirretroceso	Estándar Para uso universal	Dimensiones
~		

				Revoluciones	Diámetro	D	E	F	Н	L	N	0	Р	Q	S	Peso
			Par	máx.	d											
	_	Combinaciones de	nominal	Aro interior												
Rueda libre	Tipo	palancas y tapas	M _N	gira libre												
			Nm	min ⁻¹	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
FGR 12	R	A2A3	55	2 500	12	62	13	1	51	42	10	64	10	44	12	1,4
FGR 15	R	A2A3	130	2 200	15	68	13	1	62	52	10	78	10	47	12	1,8
FGR 20	R	A2A3	180	1 900	20	75	15	1	72	57	11	82	12	54	12	2,3
FGR 25	R	A2A3	290	1 550	25	90	17	1	84	60	14	85	16	62	12	3,4
FGR 30	R	A2A3	500	1 400	30	100	17	1	92	68	14	95	16	68	12	4,5
FGR 35	R	A2A3	730	1 300	35	110	22	1	102	74	18	102	20	76	12	5,6
FGR 40	R	A2A3	1 000	1 150	40	125	22	1	112	86	18	115	20	85	13	8,5
FGR 45	R	A2A3	1 150	1 100	45	130	26	1	120	86	22	115	25	90	14	8,9
FGR 50	R	A2A3	2 100	950	50	150	26	1	135	94	22	123	25	102	15	12,8
FGR 55	R	A2A3	2 600	900	55	160	30	1	142	104	25	138	32	108	18	16,2
FGR 60	R	A2A3	3 500	800	60	170	30	1	145	114	25	147	32	112	18	19,3
FGR 70	R	A2A3	6 000	700	70	190	35	1	175	134	30	168	38	135	17	23,5
FGR 80	R	A2A3	6 800	600	80	210	35	1	185	144	30	178	38	145	17	32,0
FGR 90	R	A2A3	11 000	500	90	230	45	1	205	158	40	192	50	155	17	47,2
FGR 100	R	A2A3	20 000	350	100	270	45	1	230	182	40	217	50	180	17	76,0
FGR 130	R	A2A3	31 000	250	130	310	60	1	268	212	55	250	68	205	18	110,0
FGR 150	R	A2A3	68 000	200	150	400	60	1	325	246	55	286	68	255	20	214,0

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo. El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

El soporte del momento de torsión se realiza mediante la palanca con perno de sujeción. El perno de sujeción encastra en una ranura o un agujero en el bastidor de la máquina. Debe tener de 0,5 a 2 mm de juego axial y radial. Retirando el perno de sujeción de la palanca, el eje puede ser girado en ambas direcciones.

La tolerancia del eje debe ser ISO h6 o j6.

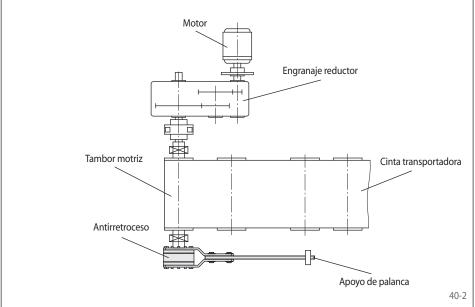
Ejemplo de pedido

La rueda libre base FGR, la palanca, los retenes y los tornillos se suministran sueltos, si no se especifica lo contrario en el pedido.

Rueda libre FGR 25, estándar con tapa A2 y palanca A3:

• FGR 25 R A2A3

Si desean que la rueda libre completa FGR ... R A2A3 se suministre con llenado de aceite, rogamos lo indiquen en el pedido. Rogamos que en sus pedidos indiquen adicionalmente el sentido de giro libre del aro interior visto en dirección X:


- libre en sentido antihorario
- libre en sentido horario

Ruedas libres completas FRHD

RINGSPANN®

con palanca en pulgadas con elementos de bloqueo

Aplicación como

Antirretroceso

para bajas velocidades. Las ruedas libres están diseñadas para su uso en cintas transportadoras inclinadas, elevadores o bombas. Retenes de Taconite protegen el interior de la rueda libre de polvo o suciedad.

Características

Ruedas libres completas FRHD con palanca, son ruedas libres con elementos de bloqueo, provistas de rodamientos de bolas y retenes. Están provistas de aceite y preparadas para su montaje.

La ruedas libres FRHD se instalan sobre ejes contínuos o los extremos del eje (muñón).

Pares nominales hasta 900 000 lb-ft. Diámetros interiores hasta 21 inch.

Ejemplo de aplicación

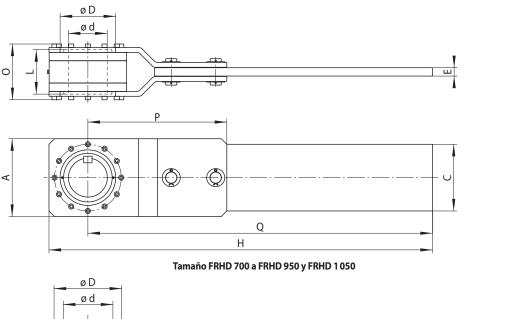
Antirretroceso FRHD 900 en el eje de entrada del tambor de una cinta transportadora inclinada. La palanca se une a la rueda libre mediante bulones. El par de retroceso se transmite a través de la palanca al apoyo. Para operaciones de mantenimiento, la cinta transportadora sin carga se puede girar en ambas direcciones soltando los bulones.

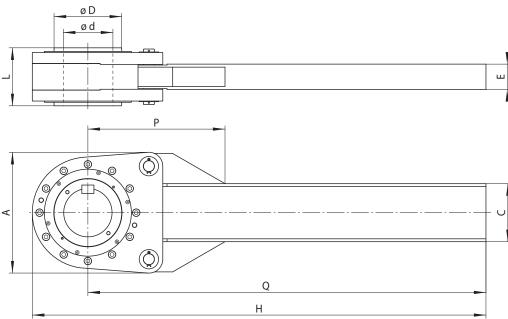
Instrucciones de montaje

El par de retroceso se transmite a través de la palanca al apoyo. Al utilizar la rueda libre como antirretroceso, la palanca no debe estar bajo tensión. Debe tener 0,5 inch de juego en dirección axial y dirección radial.

La tolerancia del eje debe ser ISO h6 o j6.

Ejemplo de pedido


Rueda libre FRHD 800 con diámetro interior de 3,500 inch:


• FRHD 800, d = 3,5 inch

41-1

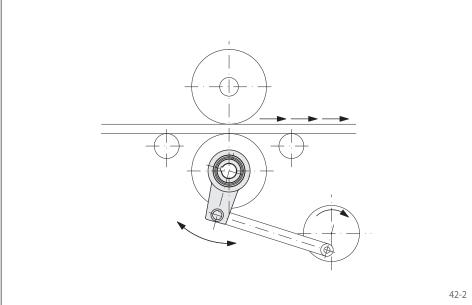
41-2

con palanca en pulgadas con elementos de bloqueo

Tamaño FRHD 1 000 y FRHD 1 100 a FRHD 1 800

Antirretroce	Para uso i	universal												
Rueda libre	Par nominal M _N Ib-ft	Revoluciones máx. Aro interior gira libre min ⁻¹	Diámetro d máx. inch	A	C	D inch	E inch	H	L	0 inch	P	Q inch	Peso Ibs	
FRHD 700	3 750	620	3,44	8,00	6,00	5,25	0,50	36,00	6,00	6,75	16,38	32,00	135	
FRHD 775	7500	540	3,75	9,75	8,00	6,00	1,00	42,88	7,50	9,00	20,38	38,00	310	
FRHD 800	12000	460	4,50	10,50	10,00	7,00	1,00	43,25	8,00	9,50	22,13	38,00	360	
FRHD 900	18 500	400	5,44	12,00	10,00	8,00	1,50	54,00	7,63	9,38	22,75	48,00	480	
FRHD 950	23 000	360	7,00	14,00	12,00	10,00	1,50	69,00	8,00	10,00	25,00	62,00	530	
FRHD 1 000	28 000	360	7,00	17,00	8,00	9,00	4,13	80,38	8,75	-	23,13	72,00	550	
FRHD 1 050	45 000	360	7,00	14,00	12,00	10,00	1,50	79,00	10,50	12,50	29,00	72,00	600	
FRHD 1 100	45 000	360	7,00	17,00	8,00	9,00	4,13	80,38	10,00	-	23,13	72,00	795	
FRHD 1 200	92 500	250	9,00	23,00	10,00	12,00	4,94	89,00	11,00	-	28,00	78,00	1 300	
FRHD 1 300	110 000	220	10,00	25,00	12,00	14,00	5,25	95,00	12,00	-	30,00	82,88	1674	
FRHD 1 400	140 000	200	12,00	30,00	18,00	16,00	6,25	107,00	13,00	-	36,00	94,00	2 2 0 0	
FRHD 1 450	190 000	200	12,00	30,00	18,00	16,00	6,25	107,00	15,00	-	36,00	94,00	2500	
FRHD 1 500	290 000	200	12,00	31,00	18,00	15,13	6,25	107,00	17,62	-	36,00	94,00	2440	
FRHD 1 600	373 000	140	14,00	32,50	20,00	17,63	6,25	124,00	19,25	-	30,44	108,00	3 4 0 0	
FRHD 1 700	625 000	120	18,00	42,50	24,50	23,00	7,88	140,00	20,00	-	48,00	120,00	7 0 0 0	
FRHD 1800	900 000	100	21,00	52,00	30,00	26,50	10,50	170,00	23,00	-	54,00	144,00	12000	

El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario.


Dimensiones del chavetero a petición de los clientes. • Factores de conversión: 1 lb-ft = 1,35 Nm, 1 inch = 25,4 mm, 1 lbs = 0,453 kg.

Ruedas libres completas FA

RINGSPANN®

con palanca con elementos de bloqueo y provista de grasa

Aplicación como

Antirretroceso

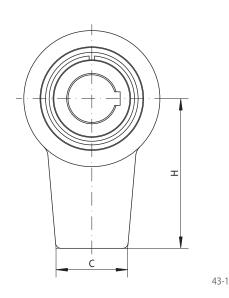
Rueda libre de avance

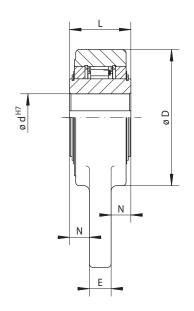
Para aplicaciones como antirretroceso, en operación de giro libre a bajas velocidades. Para aplicaciones como rueda libre de indexación, con un número total bajo o medio de indexaciones.

Características

Las ruedas libres completas FA con palanca son ruedas libres con elementos de bloqueo, equipadas con cojinete de deslizamiento. Están provistas de grasa y libres de mantenimiento.

Adicionalmente al modelo estándar, se encuentra disponible el modelo con RIDUVIT®, para una mayor duración de vida.


Pares nominales hasta 2 500 Nm.


Diámetros interiores hasta 85 mm. Otros diámetros estándar, estarán disponibles a corto plazo.

Ejemplo de aplicación

Rueda libre completa FA 82 SFT utilizada como rueda libre de avance en la unidad de avance de material de una estampadora. La rueda libre es accionada por una manivela de disco. Los elementos de bloqueo RIDUVIT® garantizan una elevada duración de vida de la rueda libre.

con palanca con elementos de bloqueo y provista de grasa

43-2

re de avance ntirretroceso	Standard type For universal use	RIDUVIT® Para elevada duración de vida mediante recubrimiento de los elementos de bloqueo	Dimensiones
Ruedalib			

		Par nominal	Revoluciones máx. Aro interior gira libre		Par nominal	Revoluciones máx. Aro interior gira libre	Diám d		С	D	Е	Н	L	N	Peso
Rueda libre	Tipo	M _N	min ⁻¹	Tipo	M _N	min ⁻¹	Estándar	máx.							
		Nm			Nm		mm	mm	mm	mm	mm	mm	mm	mm	kg
FA 37	SF	230	250	SFT	230	500	20	25*	35	76	12	90	35	11,5	1,0
FA 57	SF	630	170	SFT	630	340	40	42*	50	100	16	125	45	14,5	2,5
FA 82	SF	1600	130	SFT	1600	260	50	65*	60	140	18	160	60	21,0	5,5
FA 107	SF	2500	90	SFT	2500	180	70	85*	80	170	20	180	65	22,5	8,5

Instrucciones de montaje

Al utilizar la rueda libre como antirretroceso, la palanca no debe apretarse. Debe tener de 0,5 a 2 mm de juego axial y radial.

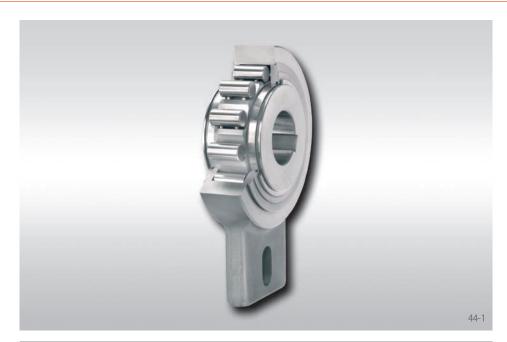
Al utilizar la rueda libre como rueda libre de avance, la palanca sirve como palanca de avance. La palanca no está templada, por lo que pueden taladrarse por parte del cliente.

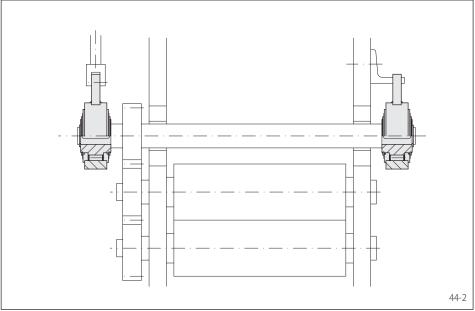
La tolerancia del eje debe ser ISO h6 o j6.

Ejemplo de pedido

Rueda libre FA 57 tipo RIDUVIT® con un diámetro interior de 40 mm:

• FA 57 SFT, d = 40 mm


Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo. El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura J510.


^{*} Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.

Ruedas libres completas FAV

RINGSPANN®

con palanca con rodillos de bloqueo y provista de grasa

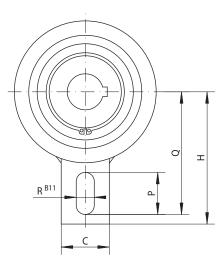
Aplicación como

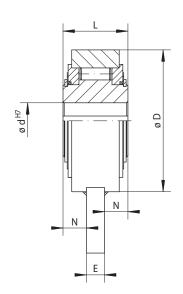
Antirretroceso

Para aplicaciones como antirretroceso, en operación de giro libre a bajas velocidades.

Para aplicaciones como rueda libre de indexación, con un número total bajo o medio de indexacio-

Características


Las ruedas libres completas FAV con palanca son ruedas libres con rodillos de bloqueo, equipadas con cojinete de deslizamiento. Están provistas de grasa, por lo que son libres de mantenimiento, y preparadas para su montaje.


Pares nominales hasta 2 500 Nm. Diámetros interiores hasta 80 mm.

Ejemplo de aplicación

Dos ruedas libres completas FAV 50 en la unidad de avance por rodillos de una máquina de elaboración de chapa. La rueda libre de avance del lado izquierdo es accionada por una manivela de disco con recorrido ajustable, permitiendo el ajuste continuo del recorrido de avance. El antirretroceso a la derecha impide el retroceso de los rodillos de avance durante el recorrido en vacío de la rueda libre de avance. En muchas ocasiones se dispone además de un freno pequeño para impedir el avance de la cinta de chapa acelerada.

con palanca con rodillos de bloqueo y provista de grasa

45-1 45-2

e de avance tirretroceso	Estándar Para uso universal	Dimensiones
Ruedalibr		

		Revoluciones	Diámetro	С	D	Е	Н	L	N	Р	Q	R	Peso
Rueda libre	Par nominal M _N Nm	máx. Aro interior gira libre min ⁻¹	d mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
FAV 20	220	500	20	40	83	12	90	35	11,5	35	85	15	1,3
FAV 25	220	500	25	40	83	12	90	35	11,5	35	85	15	1,3
FAV 30	1025	350	30	40	118	15	110	54	19,5	35	102	15	3,5
FAV 35	1025	350	35	40	118	15	110	54	19,5	35	102	15	3,4
FAV 40	1025	350	40	40	118	15	110	54	19,5	35	102	15	3,3
FAV 45	1 600	250	45	80	155	20	140	54	17,0	35	130	18	5,5
FAV 50	1 600	250	50	80	155	20	140	54	17,0	35	130	18	5,4
FAV 55	1 600	250	55	80	155	20	140	54	17,0	35	130	18	5,3
FAV 60	1 600	250	60	80	155	20	140	54	17,0	35	130	18	5,2
FAV 70	1 600	250	70	80	155	20	140	54	17,0	35	130	18	5,0
FAV 80	2 500	220	80	80	190	20	155	64	22,0	40	145	20	9,0

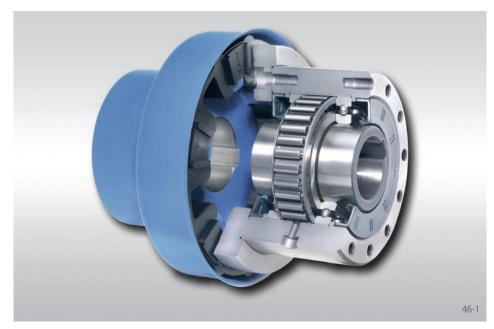
Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo. El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

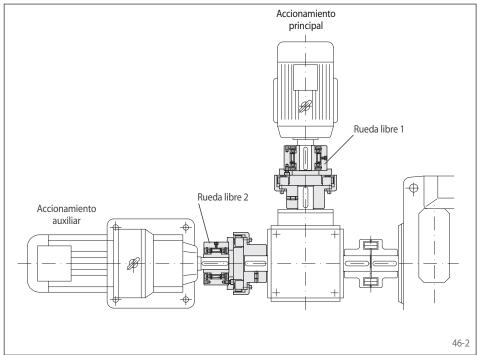
Instrucciones de montaje

Al utilizar la rueda libre como antirretroceso, la palanca no debe apretarse. Debe tener de 0,5 a 2 mm de juego axial y radial.

Al utilizar la rueda libre como rueda libre de avance, la palanca sirve como palanca de avance. La tolerancia del eje debe ser ISO h6 o j6.

Ejemplo de pedido


Rueda libre FAV 60 tipo estándar:


• FAV 60

Ruedas libres completas FBE

RINGSPANN[®]

con acoplamiento de ejes para desviaciones menores con elementos de bloqueo de forma en tres diferentes tipos

Instrucciones de montaje

El acoplamiento de ejes, incluyendo los tornillos de fijación, se suministra suelto. Dependiendo del sentido de giro libre requerido, se montará en el lado izquierdo o derecho de la rueda libre.

La tolerancia de los ejes debe ser ISO h6 o j6.

Aplicación como

Embrague por adelantamiento

Características

Las ruedas libres completas FBE con acoplamiento de ejes elástico son ruedas libres con elementos de bloqueo de forma, equipadas con rodamientos de bolas y retenes, para la unión de dos ejes bien alineados. Se suministran provistas de aceite y preparadas para su montaje.

Aparte del tipo estándar, se dispone de dos tipos más para una elevada duración de vida.

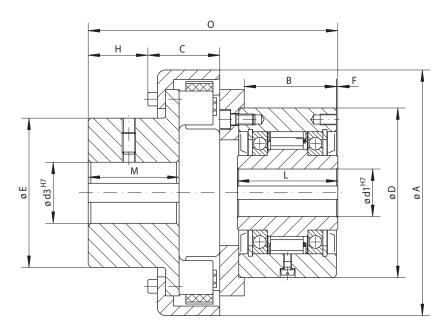
Pares nominales hasta 160 000 Nm.

Diámetros interiores hasta 300 mm. Se dispone de una amplia gama de diámetros interiores están-

El material de los componentes elásticos del acoplamiento es resistente al aceite. Solicite los datos técnicos del acoplamiento de ejes elástico.

Ejemplo de aplicación

Dos ruedas libres completas FBE 72 con acoplamiento de ejes utilizadas como embragues por adelantamiento en la unidad propulsora de un molino tubular con accionamiento auxiliar adicional. Entre el accionamiento principal y el engranaje cónico está ubicada una rueda libre FBE 72 SF estándar (rueda libre 1). Entre el accionamiento auxiliar y el engranaje cónico está ubicada una rueda libre FBE 72 LZ con despegue Z de los elementos de bloqueo (rueda libre 2). Cuando el motorreductor funciona en modo auxiliar, la rueda libre 2 funciona en arrastre y la rueda libre 2 adelanta a bajas revoluciones (en vacío). Cuando el accionamiento se realiza a través del motor principal, la instalación es accionada por la rueda libre 1 (en arrastre). La rueda libre 2 adelanta y desacopla automáticamente el accionamiento auxiliar (en vacío). Dadas las altas revoluciones, se utiliza el tipo con despegue Z. En funcionamiento en vacío, los elementos de bloqueo de forma trabajan sin contacto y, por tanto, libres de desgaste.


Ejemplo de pedido

Rueda libre FBE 107 estándar con un diámetro interior de 60 mm de la rueda libre y de 55 mm del acoplamiento de ejes:

FBE 107 SF, d1 = 60 mm, d3 = 55 mm

47-1

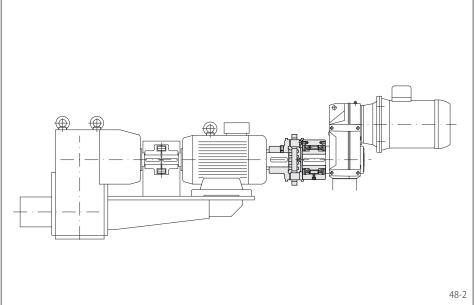
con acoplamiento de ejes para desviaciones menores con elementos de bloqueo de forma en tres diferentes tipos

Bestándar
Para uso universal
Para elevada duración de vida mediante recubrimiento
Para elevada duración de vida mediante recubrimiento
Para elevada duración de vida mediante despegue
de los elementos de bloqueo
de los elementos de bloqueo al girar el aro exterior a velocidad alta

Rueda libre	Tipo	Par nominal	Revolucio Aro interior adelanta	ones máx. Aro exterior adelanta	Tipo	Par nominal	Revolucio Aro interior adelanta	ones máx. Aro exterior adelanta	Tipo	Par nominal	Velocidad de despegue aro exterior	Revolucio Aro exterior adelanta	nes máx. Aro interior arrastra
nueua libre	Про	M _N Nm	min ⁻¹	min ⁻¹	про	M _N Nm	min ⁻¹	min ⁻¹	Προ	M _N Nm	min ⁻¹	min ⁻¹	min ⁻¹
FBE 24	CF	45	4800	5000	CFT	45	4800	5000					
FBE 29	CF	80	3 5 0 0	4000	CFT	80	3 5 0 0	4000					
FBE 37	SF	200	2500	2600	SFT	200	2500	2600	CZ	110	850	3000	340
FBE 44	SF	320	1900	2200	SFT	320	1 900	2200	CZ	180	800	2600	320
FBE 57	SF	630	1400	1 750	SFT	630	1 400	1750	LZ	430	1 400	2100	560
FBE 72	SF	1 250	1120	1600	SFT	1 250	1120	1600	LZ	760	1 2 2 0	1800	488
FBE 82	SF	1800	1025	1450	SFT	1800	1 0 2 5	1450	SFZ	1 700	1450	1600	580
FBE 107	SF	2500	880	1 250	SFT	2500	880	1 2 5 0	SFZ	2500	1300	1350	520
FBE 127	SF	5 000	800	1150	SFT	5 000	800	1150	SFZ	5 000	1 200	1200	480
FBE 140	SF	10 000	750	1 100	SFT	10 000	750	1 100	SFZ	10 000	950	1150	380
FBE 200	SF	20 000	630	900	SFT	20 000	630	900	SFZ	20 000	680	900	272
FBE 270	SF	40 000	510	750	SFT	40 000	510	750	SFZ	37 500	600	750	240
FBE 340	SF	80 000	460	630	SFT	80 000	460	630					
FBE 440	SF	160 000	400	550	SFT	160 000	400	550					

El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario.

	Diáme	tro d1	Diáme	tro d3	А	В	С	D	Е	F	Н	L	М	0	Peso
Rueda libre	Estándar	máx.	mín.	máx.											
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
FBE 24	12	14*	10	35	77	45	30	62	55	1,0	28	50	40	114,0	1,7
FBE 29	15	17*	10	40	90	47	33	68	65	1,0	32	52	45	123,0	2,4
FBE 37	20	22*	10	45	114	44	37	75	72	0,5	28	48	48	122,5	3,1
FBE 44	25*	25*	10	50	127	45	36	90	78	0,5	31	50	52	129,5	4,3
FBE 57	30	32*	20	60	158	60	48	100	96	0,5	39	65	61	162,5	7,3
FBE 72	40	42*	20	70	181	68	53	125	110	1,0	44	74	67	184,0	11,6
FBE 82	50*	50*	25	75	202	67	64	135	120	2,0	46	75	75	200,0	15,4
FBE 107	60	65*	30	80	230	81	75	170	130	2,5	48	90	82	230,0	24,9
FBE 127	70	75*	45	100	294	102	97	200	160	3,0	56	112	97	288,0	47,3
FBE 140	90	95*	60	120	330	135	100	250	200	5,0	80	150	116	350,0	93,3
FBE 200	120	120	85	160	432	143	141	300	255	5,0	104	160	160	408,0	169,0
FBE 270	140	150		180	553	190	197	400	300	6,0	145	212	230	512,0	320,0
FBE 340	180	240		235	725	240	235	500	390	7,5	173	265	285	637,5	580,0
FBE 440	220	300		265	832	290	247	630	435	7,5	183	315	310	737,5	1206,0


Diámetro d1: Ranura de chaveta según DIN 6885, pág.1 • Tolerancia del ancho de la ranura JS10 * Ranura de chaveta según DIN 6885, pág.3 • Tolerancia del ancho de la ranura JS10 Diámetro d3: Ranura de chaveta según DIN 6885, pág.1 • Tolerancia del ancho de la ranura P9

Ruedas libres completas FBL

RINGSPANN[®]

con acoplamiento de ejes para desviaciones menores con elementos de bloqueo de forma en tres diferentes tipos

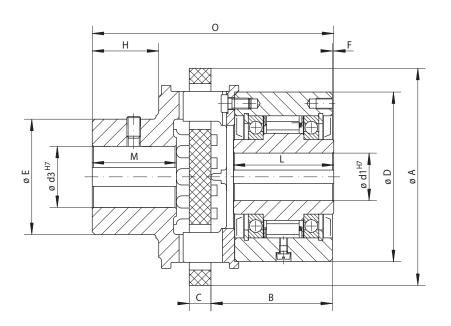
Aplicación como

Embrague por adelantamiento

Características

Las ruedas libres completas FBL con acoplamiento de ejes RINGSPANN son ruedas libres con elementos de bloqueo de forma, equipadas con rodamientos de bolas y retenes, para la unión de dos ejes. Se suministran provistas de aceite y preparadas para su montaje.

Aparte del tipo estándar, se dispone de dos tipos más para una elevada duración de vida.


Pares nominales hasta 8 000 Nm.

Diámetros interiores hasta 140 mm. Se dispone de una amplia gama de diámetros interiores estándar. Se dispone de una amplia gama de diámetros interiores estándar. El acoplamiento de ejes RING-SPANN es rígido a la torsión y absorbe elevadas desviaciones radiales y angulares, sinfuerzas reactivas que afecten a los rodamientos cercanos.

Ejemplo de aplicación

Rueda libre completa FBL 82 SFZ utilizada como embrague por adelantamiento en la unidad propulsora de una instalación de cintas transportadoras con accionamiento adicional para marcha ultralenta. La rueda libre con acoplamiento de ejes está ubicada entre el motor principal y el accionamiento de marcha ultralenta. En marcha ultralenta, la rueda libre trabaja en funcionamiento de arrastre y acciona la cinta a bajas revoluciones. En el funcionamiento normal (en vacío), el motor realiza el accionamiento y el aro exterior con el acoplamiento de ejes adelanta, desacoplando automáticamente el accionamiento de marcha ultralenta. Dadas las altas revoluciones, se utiliza el tipo con despegue Z. En funcionamiento en vacío, los elementos de bloqueo de forma trabajan sin contacto y, por tanto, libres de desgaste.

con acoplamiento de ejes para desviaciones menores con elementos de bloqueo de forma en tres diferentes tipos

49-1

mbrague por elantamiento	Estándar Para uso universal	RIDUVIT® Para elevada duración de vida mediante recubrimiento de los elementos de bloqueo	Con despegue Z Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro exterior a velocidad alta
ш ф			

			Revolucio	nes máx.			Revolucio	nes máx.				Revolucio	nes máx.
		Par	Aro interior	Aro exterior		Par	Aro interior	Aro exterior		Par	Velocidad de	Aro exterior	Aro interior
		nominal	adelanta	adelanta		nominal	adelanta	adelanta		nominal	despegue	adelanta	arrastra
Rueda libre	Tipo	M _N			Tipo	M _N			Tipo	M _N	aro exterior		
		Nm	min ⁻¹	min ⁻¹		Nm	min ⁻¹	min ⁻¹		Nm	min ⁻¹	min ⁻¹	min ⁻¹
FBL 37	SF	85	2500	2600	SFT	85	2500	2600	CZ	85	850	3000	340
FBL 44	SF	190	1 900	2200	SFT	190	1 900	2200	CZ	180	800	2600	320
FBL 57	SF	500	1 400	1750	SFT	500	1 400	1750	LZ	430	1 400	2100	560
FBL 72	SF	500	1120	1600	SFT	500	1120	1 600	LZ	500	1 2 2 0	1800	488
FBL 82	SF	1 000	1 0 2 5	1450	SFT	1 000	1025	1450	SFZ	1 000	1450	1600	580
FBL 107	SF	2000	880	1250	SFT	2000	880	1 2 5 0	SFZ	2000	1300	1350	520
FBL 127	SF	4000	800	1150	SFT	4000	800	1150	SFZ	4000	1 200	1200	480
FBL 140	SF	8000	750	1050	SFT	8 000	750	1050	SFZ	8000	950	1050	380

El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario.

		etro d1	Diáme	tro d3	Α	В	С	D	Е	F	Н	L	М	0	Peso
Rueda libre	Estándar	máx.	mín.	máx.											
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
FBL 37	20	22*	14	35	110	62,0	12	75	53	0,5	33	48	42	124	3,0
FBL 44	25*	25*	20	42	135	65,0	14	90	66	0,5	41	50	53	140	4,6
FBL 57	30	32*	30	50	160	82,5	16	100	85	0,5	51	65	62	170	6,9
FBL 72	40	42*	30	50	160	89,5	16	125	85	1,0	51	74	62	178	10,0
FBL 82	50*	50*	40	70	200	92,0	20	135	104	2,0	65	75	79	204	14,2
FBL 107	60	65*	50	90	250	111,5	25	170	150	2,5	81	90	100	250	28,0
FBL 127	70	75*	60	110	315	138,0	32	200	175	3,0	101	112	124	313	48,8
FBL 140	90	95*	75	140	400	183,5	40	250	216	5,0	130	150	160	410	102,2

Diámetro d1: Ranura de chaveta según DIN 6885, pág.1 • Tolerancia del ancho de la ranura JS10 * Ranura de chaveta según DIN 6885, pág.3 • Tolerancia del ancho de la ranura JS10 Diámetro d3: Ranura de chaveta según DIN 6885, pág.1 • Tolerancia del ancho de la ranura P9

Instrucciones de montaje

El disco de compensación del acoplamiento de ejes debe montarse con juego axial para impedir que los rodamientos de bola de la rueda libre bloqueen debido a la dilatación térmica.

El acoplamiento de ejes, incluyendo los tornillos de fijación, se suministra suelto. Dependiendo del sentido de giro libre requerido, se montará en el lado izquierdo o derecho de la rueda libre.

La tolerancia de los ejes debe ser ISO h6 o j6.

Ejemplo de pedido

Rueda libre FBL 72 con despegue Z de los elementos de bloqueo, con un diámetro interior de 40 mm de la rueda libre y de 50 mm del acoplamiento de ejes:

• FBL 72 LZ, d1 = 40 mm, d3 = 50 mm

Ruedas libres con carcasa FH

RINGSPANN[®]

para colocación estacionaria en accionamientos multimotor con despegue hidrodinámico de los rodillos para mayor duración de vida

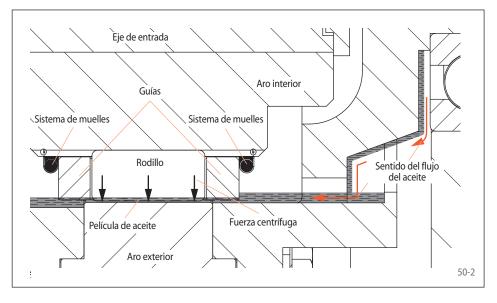
Aplicación como

Embrague por adelantamiento

para altas velocidades, iguales o similares, tanto en operación de giro libre como en arrastre.

Características

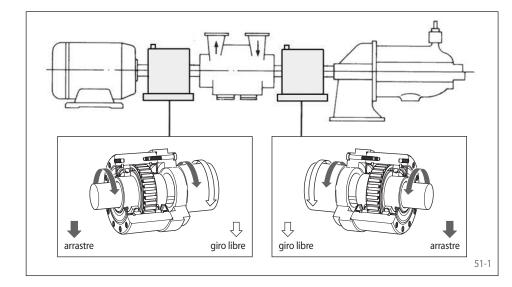
Las ruedas libres con carcasa FH con despegue hidrodinámico de los rodillos se utilizan en aquellos casos en los que un grupo es accionado por dos o más motores o turbinas con un número de revoluciones igual o similar. Las ruedas FH permiten una operación continua de la planta en el caso de que una de las fuentes de energía o una linea de accionamiento falle, así como el ahorro de energía en el caso de operación de carga parcial.


Las ruedas libres con carcasa FH son ruedas libres completamente herméticas para la colocación estacionaria con eje motriz y de salida.

Ventajas

- Pares hasta 40675 Nm
- Diámetros hasta 129 mm
- Funcionamiento sin desgaste
- Bajo nivel sonoro
- Bajo consumo de energía
- Sistema integrado de filtración de aceite
- Freno de bloqueo integrado
- Cambio de aceite sin parada de la instalación

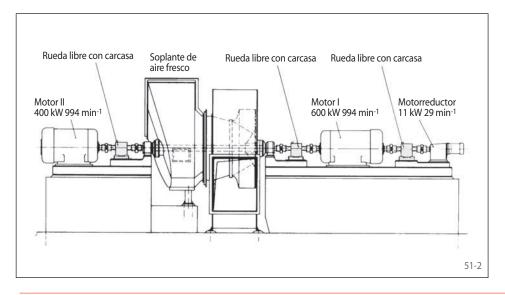
Despegue hidrodinámico de los rodillos


Las ruedas libres con carcasa FH están equipadas con despegue hidrodinámico de los rodillos. El despegue hidrodinámico de los rodillos es la solución idónea para embragues por adelantamiento a altas velocidades, no sólo en giro libre sino también en arrastre, tal y como ocurre en acciona-

mientos múltiples. En el despegue hidrodinámico de los rodillos, la fuerza de despegue es generada por una fina película de aceite, que es generada por el giro libre y su fuerza centrifuga, que se ejerce sobre la pista de rodadura del aro exterior. Esto prácticamente hace posible la ausencia de desgaste durante la operación de giro libre. El número de revoluciones relativo entre los aros interior y exterior es decisivo para el despegue. Si la velocidad relativa se reduce, la fuerza de despegue también se reduce. Antes de alcanzar la marcha sincronizada y con la ayuda de un sistema de muelles central, los rodillos de bloqueo guiados en una jaula se posicionan nuevamente contra la pista de rodadura del aro exterior, encontrándose ahora listos para el bloqueo. Esto garantiza la transferencia inmediata del par, una vez se haya alcanzado la marcha sincronizada. El despegue hidrodinámico de los rodillos permite un funcionamiento prácticamente sin desgaste.

Ruedas libres con carcasa FH

para colocación estacionaria en accionamientos multimotor con despegue hidrodinámico de los rodillos para mayor duración de vida



Campos de aplicación

Las ruedas libres con carcasa, que trabajan como embragues automáticos en accionamientos múltiples, ejercen una función importante. Automáticamente desacoplan el accionamiento en cuanto éste deja de transferir potencia a la máquina. Las ruedas libres con carcasa no necesitan equipos de operación externos.

Aplicaciones comunes para accionamientos múltiples son:

- Generadores
- Bombas
- Ventiladores
- Soplantes
- · Funcionamiento ininterrumpido

Ejemplo de aplicación

Tres ruedas libres con carcasa, utilizadas en un accionamiento múltiple de una soplante de aire fresco. Para accionar la soplante, se puede elegir entre uno o dos motores eléctricos. Un accionamiento auxiliar adicional se encarga de hacer girar la soplante lentamente para los trabajos de mantenimiento o para el enfriamiento uniforme después de su desconexión. Las ruedas libres con carcasa acoplan automáticamente aquel accionamiento a la soplante que esté funcionando.

Selección del par de una rueda libre con carcasa FH

En muchos casos donde se utilizan estas ruedas libres con carcasa, existen procesos dinámicos que producen puntas de par muy altas. En el caso de las ruedas libres con carcasa, deben tenerse en cuenta puntas de par que se producen durante la puesta en marcha. Las puntas par en el arranque pueden multipilcar el par punta calculado desde el par de vuelco, como sucede en el caso de motores asíncronos, especialmente en la aceleración de grandes masas y también cuando se usan acoplamientos elásticos. Las condiciones para un motor de combustión interna son similares. Debido a la irregularidad de estas puntas de par, puede excederse el par nominal incluso en el funcionamiento normal.

La determinación previa del posible par máximo se lleva a cabo de manera más segura utilizando un análisis vibracional de la rotación del sistema completo. Esto, sin embargo, requiere del conocimento y control de las masas en rotación, la rigidez rotacional y todos los momentos de excitación que puedan ocurrir en el sistema. En muchas ocasiones, un cálculo vibracional supone invertir un tiempo excesivo e incluso puede que en la fase de proyecto no se dispongan de todos los datos necesarios. En este caso, el par de determinación M_{A} de la rueda libre con carcasa FH puede determinarse según:

 $M_A\,=\,K\cdot M_L$

En esta ecuación:

M_A = Par de deternimación de la rueda libre

K = Factor de funcionamiento

M_L = Par de carga de la rueda libre en rotación uniforme:

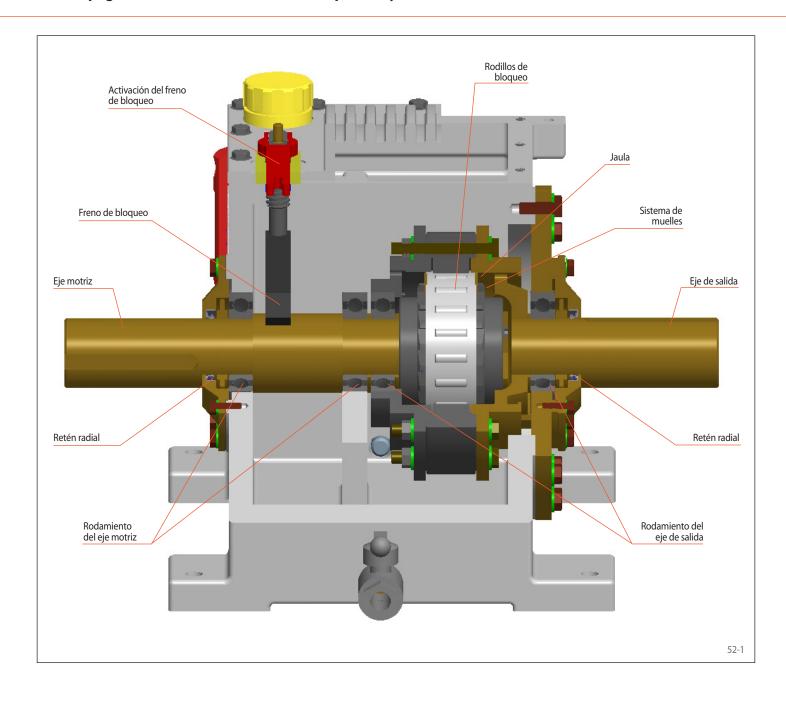
 $= 9550 \cdot P_0/n_{FR}$

 P_0 = Potencia nominal del motor [kW]

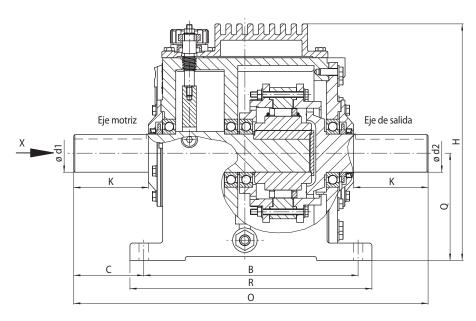
n_{FR} = Velocidad de la rueda libre en funcionamiento de arrastre [min⁻¹]

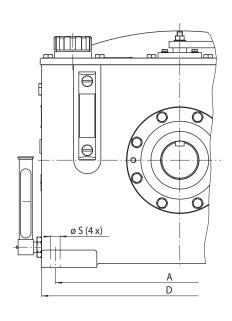
Una vez calculado el M_A, el tamaño de la rueda libre con carcasa FH debe ser seleccionado de acuerdo con las tablas del catálogo, de tal manera que en todos los casos se aplica:

 $M_N \ge M_A$


M_N = Par nominal de la rueda libre con carcasa FH de acuerdo con los valores de las tablas [Nm]

El factor de funcionamiento K depende de las propiedades del accionamiento y de la máquina. En tal caso, se aplican las reglas generales de la ingeniería mecánica. Recomendamos el uso de un factor de funcionamiento K de al menos 1,5. Nos ofrecemos gustosamente para comprobar su selección.


Ruedas libres con carcasa FH



para colocación estacionaria en accionamientos multimotor con despegue hidrodinámico de los rodillos para mayor duración de vida

para colocación estacionaria en accionamientos multimotor con despegue hidrodinámico de los rodillos para mayor duración de vida

53-1 53-2

	Embrague por adelantamiento			egue hidrodinán odillos de bloque							Dimen	siones					
	ag E																
	Rueda libre	Tipo	Par nominal M _N	Revolucio Eje de salida	ones máx. Eje motriz	Eje d1 y d2	А	В	С	D	Н	К	0	Q	R	S	Peso
			lb-ft	min-1	min-1	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
	FH 1000	R	1 000	5600	5600	1 3/4	12 3/4	12 ³ / ₄	3 ⁷ / ₁₆	16 ¹ / ₄	12 ⁷ / ₈	3 7/8	19 ⁵ / ₈	5 3/4	14 ¹ / ₂	11/16	231
	FH 2000	R	2000	4200	4200	2 5/16	16 ³ / ₄	143/4	4 1/4	18 ³ / ₄	15	4 5/8	23 1/4	6 ⁷ / ₈	16 ¹ / ₂	11/16	355
pulgada	FH 4000	R	4000	3 6 0 0	3600	2 3/4	18	15 ¹ / ₂	5 ¹ / ₁₆	20	17 ¹ / ₈	5 3/8	25 5/8	7 3/4	17 1/2	11/16	496
ᆵ	FH 8000	R	8 000	3000	3 0 0 0	3 ⁵ / ₁₆	17 ¹ / ₂	18 ¹ / ₄	5 ⁵ / ₈	21 1/2	18 ¹⁵ / ₁₆	6 ¹ / ₈	29 1/2	8 5/8	20 1/2	13/16	716
	FH 12000	R	12 000	2500	2500	3 ⁷ / ₈	18 ¹ / ₄	21 1/2	6 ⁵ / ₁₆	22 3/4	20 15/16	6 ¹⁵ / ₁₆	34 ¹ / ₈	9 5/8	23 3/4	1 ¹ / ₁₆	926
	FH 18000	R	18 000	2300	2300	4 5/16	20 1/2	23 1/4	7 ⁵ / ₁₆	26	20 5/8	7 11/16	37 ⁷ /8	11 ¹ / ₄	25 3/4	1 ⁵ / ₁₆	1402
	FH 30000	R	30 000	2000	2000	5 ¹ / ₁₆	25 ¹ / ₂	26 ¹ / ₄	7 ⁷ / ₈	31	26 ¹ / ₂	8 ⁵ / ₈	42	12 3/4	29 ¹ / ₂	1 ⁵ / ₁₆	2178
			Nm	min-1	min-1	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
	FH 1000	R	1 356	5 600	5 600	44,45	323,85	323,85	87,31	412,75	327,00	98,43	498,48	146,05	368,30	17,50	105
	FH 2000	R	2712	4200	4200	58,74	425,45	374,65	107,95	480,00	381,00	117,48	590,55	174,63	419,10	17,50	161
métrico	FH 4000	R	5 423	3600	3600	69,85	457,20	393,70	128,59	508,00	435,00	136,53	650,88	196,85	444,50	17,50	225
Ĕ	FH 8000	R	10847	3000	3000	84,14	444,50	463,55	142,87	546,00	481,00	155,58	749,30	219,08	520,00	21,00	325
	FH 12000	R	16270	2500	2500	98,43	463,55	546,10	160,35	578,00	532,00	177,00	866,80	244,48	603,00	27,00	425
	FH 18000	R	24 405	2300	2300	109,54	520,70	590,55	185,74	660,00	600,00	195,26	962,00	285,75	654,00	33,00	636
	FH 30000	l R	40 675	2000	2000	128,59	647.70	666.75	200.03	787.00	672.00	220.00	1066,80	323.85	749.00	33.00	988

El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario. Chavetero según USAS B17.1-1967

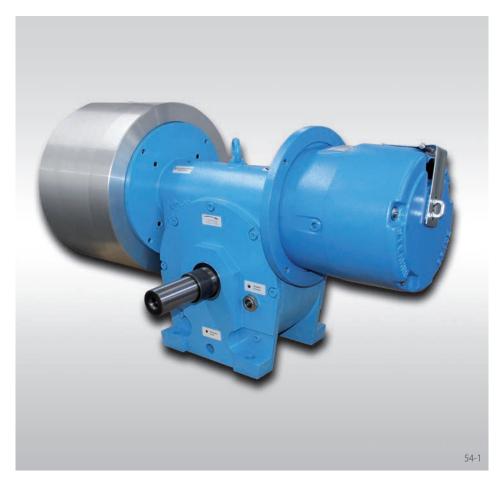
Freno de bloqueo

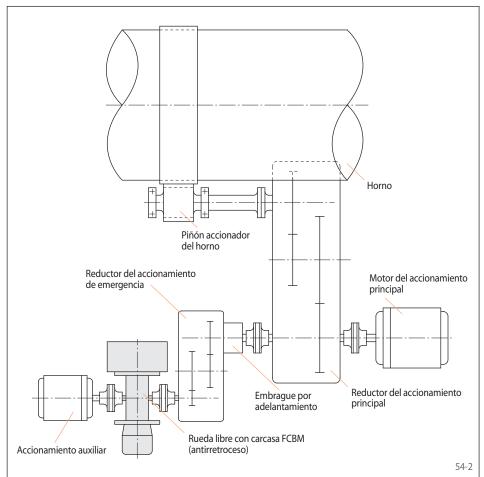
Durante el funcionamiento en giro libre, la parte de salida en funcionamiento de adelantamiento, produce un par residual que se transmite a la parte motriz. Mediante la activación manual del freno de bloqueo integrado en la rueda con carcasa, se previene el arrastre de la parte motriz.

Montaje

El montaje debe realizarse de modo que el accionamiento sea a través del eje d1 y la salida sea a través del eje d2.

Se recomienda el uso de acoplamientos de ejes rígidos a la torsión que producen unas fuerzas de retroceso mínimas. Al indicarnos las fuerzas de retroceso, podemos comprobar la duración de vida de los rodamientos integrados en la rueda libre con carcasa.


Ejemplo de pedido


Antes de realizar su pedido, por favor, complete el cuestionario de la página 115, indicando el sentido de giro de la operación en arrastre, mirando según dirección X, para que podamos verificar la selección.

Ruedas libres con carcasa FCBM

RINGSPANN®

Antirretroceso para hornos rotatorios con liberación electromagnética y manual

Aplicación como

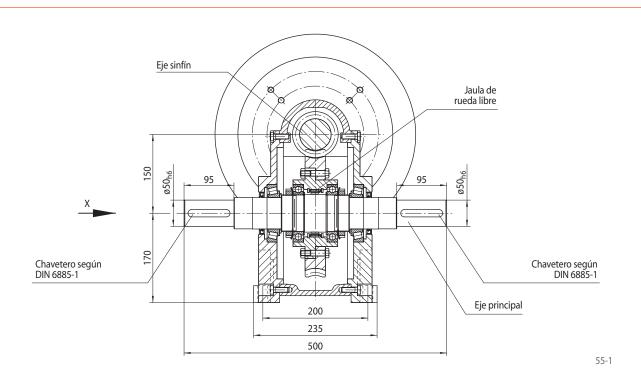
Antirretroceso

Características

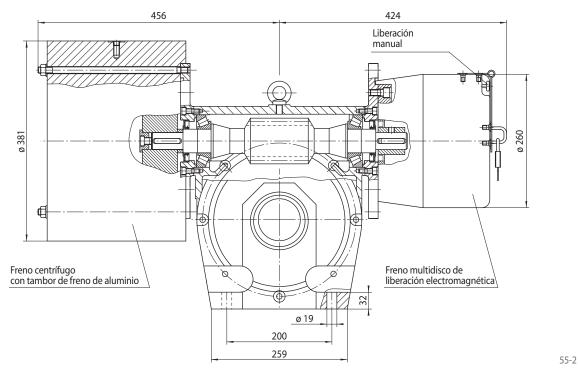
La rueda libre con carcasa FCBM se utiliza para controlar una posible rotación inversa del horno rotatorio, cuando se apaga el accionamiento de rotación. Está equipada con una jaula de rueda libre en el eje principal y un freno multidisco además de un freno centrífugo en el eje sinfín.

Cuando se apaga el accionamiento de rotación del horno, la jaula de rueda libre enclava automáticamente el eje principal y el eje sinfín. El freno multidisco que se encuentra ahora cerrado, previene la rotación inversa del horno. A través de la liberación electromagnética o manual del freno multidisco, se inicia la rotación inversa controlada del horno rotatorio. Durante la rotación inversa, el freno centrífugo se utiliza para asegurar una velocidad baja de giro del horno, hasta su detención.

La rueda libre con carcasa FCBM es una rueda libre completamente cerrada, para su colocación estacionaria con eje de entrada y eje de salida. Está diseñada para la protección de personas y equipos, ante posibles daños.


Datos técnicos

- Par nominal 750 Nm
- Velocidad máxima de adelantamiento 1600 min-1
- Capacidad de aceite 2,75 litros
- Peso 190 kg


Ejemplo de aplicación

La rueda libre con carcasa FCBM se instala habitualmente en hornos rotatorios, entre el accionamiento auxiliar y el reductor auxiliar, como se muestra en la fig. 54-2. Permite de manera controlada, una posible rotación inversa del horno rotatorio.

Antirretroceso para hornos rotatorios con liberación electromagnética y manual

Vista "X"

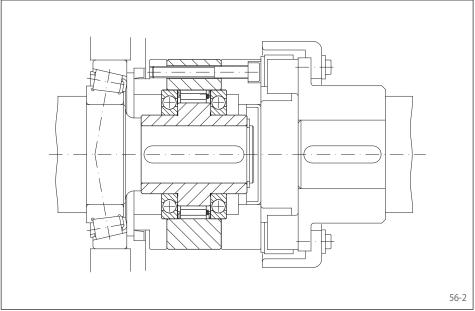
Fuente de alimentación

Se encuentran disponibles las siguientes fuentes de alimentación para el freno multidisco de liberación electromagnética:

- 230 VAC +/- 10% (207-253 V) a 50 Hz
- 400 VAC +/- 10% (360-440 V) a 50 Hz
- 115 VAC +/- 10% (103-126 V) a 60 Hz

Pueden suministrarse otras tensiones especiales bajo solicitud. Por favor, indique las tensiones sugeridas en el cuestionario de selección en la página 116.

Ejemplo de pedido


Por favor, antes de realizar su pedido, complete el cuestionario de la página 116 para que podamos comprobar la selección.

Ruedas libres con base FBO

para completar con piezas de conexión con elementos de bloqueo de forma en cuatro diferentes tipos

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las ruedas libres con base FBO son ruedas libres con elementos de bloqueo y rodamientos para la conexión de piezas complementarias por parte del cliente. Las ruedas libres son especialmente adecuadas para su montaje en carcasas con lubricación de aceite y retenes.

Aparte del tipo estándar, se dispone de tres tipos más para una elevada duración de vida.

Pares nominales hasta 160.000 Nm.

Diámetros interiores hasta 300 mm. Otros diámetros estándar, estarán disponibles a corto plazo.

Ejemplo de aplicación

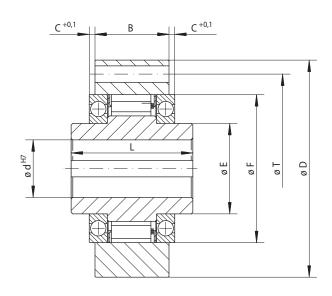
Rueda libre con base FBO 127 SF, utilizada como embrague por adelantamiento entre el accionamiento de marcha ultralenta y el reductor principal de un molino de cemento. En modo de marcha ultralenta, el acoplamiento de ejes acciona el aro exterior. La rueda libre funciona en arrastre y acciona la instalación a bajas revoluciones a través del reductor principal. En funcionamiento normal (vacío), el aro interior adelanta y el accionamiento de marcha ultralenta se desacopla automáticamente. La rueda libre está conectada a la lubricación de aceite del reductor principal y no necesita ningún mantenimiento especial. La ubicación de los retenes entre la rueda libre y el reductor principal es ventajosa, ya que en el funcionamiento normal (en vacío) están parados y no producen ningún calentamiento adicional por fricción.

Instrucciones de montaje

Las piezas de conexión a montar por parte del cliente se centran en los diámetros exteriores F del rodamiento y se fijan a través del aro exterior. La tolerancia del eje debe ser ISO h6 o j6, la tole-

La tolerancia del eje debe ser ISO h6 o j6, la tolerancia del diámetro F para el centrado de la pieza complementaria debe ser ISO H7. Deben observarse las profundidades de centrado C.

Lubricación


Debe proveerse la lubricación por aceite con la calidad de aceite prescrita.

Ejemplo de pedido

Rueda libre FBO 72 con despegue X de los elementos de bloqueo y un diámetro interior de 40 mm:

• FBO 72 DX, d = 40 mm

para completar con piezas de conexión con elementos de bloqueo de forma en cuatro diferentes tipos

57-1

rre de avance gue por adel. ntirretroceso	Estándar Para uso universal	RIDUVIT® Para elevada duración de vida mediante recubrimiento de los elementos de bloqueo	Con despegue X Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro interior a velocidad alta	Con despegue Z Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro exterior a velocidad alta
Embrac Fmbrac				

Rueda libre	Tipo	Par nominal M _N Nm	Revolucio Aro interior gira libre/ adelanta min ⁻¹	nes máx. Aro exterior gira libre/ adelanta min ⁻¹	Tipo	Par nominal M _N Nm	Revolucio Aro interior gira libre/ adelanta min ⁻¹	nes máx. Aro exterior gira libre/ adelanta min ⁻¹	Tipo	Par nominal M _N Nm	Velocidad de despegue aro interior min ⁻¹	Revolucio Aro interior gira libre/ adelanta min ⁻¹	Aro exterior arrastra min ⁻¹	Tipo	Par nominal M _N Nm	Velocidad de despegue aro exterior min ⁻¹	Revolucio Aro exterior gira libre/ adelanta min ⁻¹	nes máx. Aro interior arrastra min ⁻¹
FBO 37	SF	200	2 500	2 600	SFT	200	2 500	2 600						CZ	110	850	3 000	340
FBO 44	SF	320	1 900	2 200	SFT	320	1 900	2 200	DX	130	860	1 900	344	CZ	180	800	2 600	320
FBO 57	SF	630	1 400	1 750	SFT	630	1 400	1 750	DX	460	750	1 400	300	LZ	430	1400	2 100	560
FBO 72	SF	1250	1 120	1 600	SFT	1250	1 120	1 600	DX	720	700	1 150	280	LZ	760	1 2 2 0	1 800	488
FBO 82	SF	1800	1 025	1 450	SFT	1800	1 025	1 450	DX	1 000	670	1 050	268	SFZ	1700	1450	1 600	580
FBO 107	SF	2500	880	1 250	SFT	2500	880	1 250	DX	1500	610	900	244	SFZ	2500	1300	1 350	520
FBO 127	SF	5000	800	1 150	SFT	5000	800	1 150	SX	3400	380	800	152	SFZ	5 0 0 0	1 200	1 200	480
FBO 140	SF	10000	750	1 100	SFT	10000	750	1 100	SX	7500	320	750	128	SFZ	10000	950	1 150	380
FBO 200	SF	20 000	630	900	SFT	20 000	630	900	SX	23 000	240	630	96	SFZ	20 000	680	900	272
FBO 270	SF	40 000	510	750	SFT	40 000	510	750	SX	40 000	210	510	84	SFZ	37500	600	750	240
FBO 340	SF	80000	460	630	SFT	80000	460	630										
FBO 440	SF	160 000	400	550	SFT	160 000	400	550										

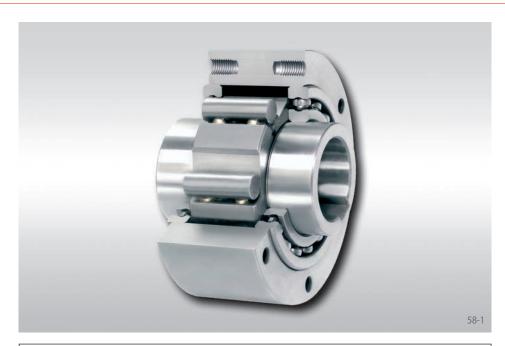
El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario.

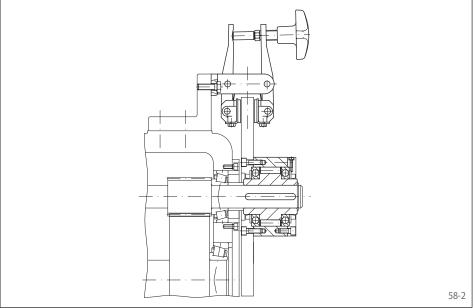
Las revoluciones máximas indicadas se aplican a las condiciones de montaje para ruedas libres completas. En ocasiones y conociendo las condiciones de montaje reales, pueden admitirse unas revoluciones mayores.

	Diáme	etro d	В	C1***	C2***	C3***	D	E	F	G	L	Т	Z**	Peso
Rueda libre	Estándar	máx.												
	mm	mm	mm	mm	mm	mm	mm	mm	mm		mm	mm		kg
FBO 37	20	22*	25	3,7		4,3	85	30	55	M 6	48	70	6	0,9
FBO 44	25*	25*	25	3,7	4,7	4,4	95	35	62	M 6	50	80	8	1,3
FBO 57	30	32*	30	4,2	7,7	7,4	110	45	75	M 8	65	95	8	1,9
FBO 72	40	42*	38	3,7	4,9	4,4	132	55	90	M 8	74	115	12	3,5
FBO 82	50*	50*	40	6,6	6,6	6,6	145	65	100	M 10	75	125	12	4,0
FBO 107	60	65*	45	8,1	8,1	8,1	170	80	125	M 10	90	150	12	7,7
FBO 127	70	75*	68	6,9	7,9	6,9	200	95	145	M 12	112	180	12	13,3
FBO 140	90	95*	68	19,1	20,1	19,1	250	120	180	M 16	150	225	12	31,5
FBO 200	120	120	85	14,1	15,1	14,1	320	160	240	M 16	160	288	16	46,5
FBO 270	140	150	100	22,5	22,5	22,5	420	200	310	M 20	212	370	18	105,0
FBO 340	180	240	125	25,6			497	300	380	M 20	265	450	24	190,0
FBO 440	220	300	150	34,1			627	380	480	M 30	315	560	24	360,0

[■] Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.
Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.
* Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.
** Z = número de agujeros de fijación para tornillos G (DIN EN ISO 4762) en el círculo primitivo T.

^{***} C1 = profundidad de centrado para las piezas complementarias en los tipos estándar y RIDUVIT®.


C2 = profundidad de centrado para las piezas complementarias en los tipos con despegue X por fuerza centrífuga.


C3 = profundidad de centrado para las piezas complementarias en los tipos con despegue Z por fuerza centrífuga.

Ruedas libres con base FGR ... R

RINGSPANN®

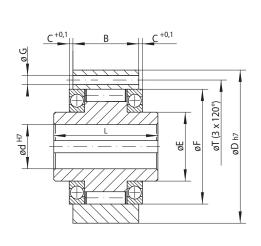
para completar con piezas de conexión con rodillos de bloqueo

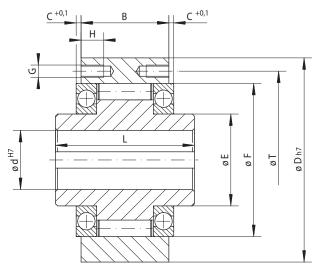
Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las ruedas libres con base FGR ... R son ruedas libres con elementos de bloqueo y rodamientos para la conexión de piezas complementarias del cliente. Las ruedas libres son especialmente adecuadas para su montaje en carcasas con lubricación de aceite y retenes.


Pares nominales de hasta 68.000 Nm. Diámetros interiores de hasta 150 mm.


Ejemplo de aplicación

Rueda libre con base FGR 25 R, utilizada como antirretroceso en un engranaje reductor del accionamiento de una cinta transportadora inclinada de una línea de montaje. Con la instalación parada, la cinta transportadora debe retenerse con total seguridad para impedir que ésta retroceda debido al peso de las piezas de montaje. El aro exterior de la rueda libre dispone de un disco y un freno de pinzas manual de RINGSPANN. El momento recuperador es retenido por la rueda libre y el freno cerrado. Para reequipar la instalación, ésta debe poder girarse en ambos sentidos de giro, para lo que el freno de pinzas se abrirá manualmente.

INGSPAININ

para completar con piezas de conexión con rodillos de bloqueo

FGR 12 59-1 **FGR 15 a FGR 150** 59-2

re de avance gue por adel. ntirretroceso	Estándar Para uso universal	Dimensiones
Rueda lib Embrac		

			Revolucio	nes max.	Diametro	В	(U	E	г	G^^	н	L	1	Z^^	Peso
		Par	Aro interior	Aro exterior	d											
		nominal	gira libre/	gira libre/												
Rueda libre	Tipo	M _N	adelanta	adelanta												
		Nm	min ⁻¹	min ⁻¹	mm	mm	mm	mm	mm	mm		mm	mm	mm		kg
FGR 12	R	55	2500	5 400	12	20	3,5	62	20	42	5,5 mm	-	42	51	3	0,5
FGR 15	R	130	2200	4800	15	28	2,0	68	25	47	M 5	8	52	56	3	0,8
FGR 20	R	180	1 900	4100	20	34	2,4	75	30	55	M 5	8	57	64	4	1,0
FGR 25	R	290	1 5 5 0	3 3 5 0	25	35	2,4	90	40	68	M 6	10	60	78	4	1,5
FGR 30	R	500	1 400	3 0 5 0	30	43	2,4	100	45	75	M 6	10	68	87	6	2,2
FGR 35	R	730	1300	2850	35	45	2,9	110	50	80	M 6	12	74	96	6	3,0
FGR 40	R	1 000	1 150	2500	40	53	2,9	125	55	90	M 8	14	86	108	6	4,6
FGR 45	R	1 150	1100	2400	45	53	2,9	130	60	95	M 8	14	86	112	8	4,7
FGR 50	R	2 100	950	2050	50	64	3,9	150	70	110	M 8	14	94	132	8	7,2
FGR 55	R	2 600	900	1 900	55	66	2,9	160	75	115	M 10	16	104	138	8	8,6
FGR 60	R	3 500	800	1800	60	78	5,4	170	80	125	M 10	16	114	150	10	10,5
FGR 70	R	6 000	700	1 600	70	95	6,4	190	90	140	M 10	16	134	165	10	13,4
FGR 80	R	6 800	600	1 400	80	100	3,9	210	105	160	M 10	16	144	185	10	18,2
FGR 90	R	11 000	500	1 300	90	115	4,9	230	120	180	M 12	20	158	206	10	28,0
FGR 100	R	20 000	350	1 000	100	120	5,4	270	140	210	M 16	24	182	240	10	43,0
FGR 130	R	31 000	250	900	130	152	7,9	310	160	240	M 16	24	212	278	12	66,0
FGR 150	R	68 000	200	700	150	180	6,9	400	200	310	M 20	32	246	360	12	136,0

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

Las piezas de conexión a montar por parte del cliente se centran en los diámetros exteriores F de los rodamientos, fijándose lateralmente en el aro exterior.

La tolerancia del eje debe ser ISO h6 o j6, la tolerancia del diámetro F para el centrado de la pieza complementaria debe ser ISO H7 o J7. Deben observarse las profundidades de centrado C.

Lubricación

Debe proveerse la lubricación por aceite con la calidad de aceite prescrita. Para hermetizar las superficies de contacto entre el aro exterior y las piezas complementarias, se incluyen dos juntas planas.

Ejemplo de pedido

Rueda libre FGR 35 estándar:

• FGR 35 R

Ranura de chaveta segun אוט 6885, noja ו • ioierancia dei ancho de la ranura לנ ** Z = número de agujeros roscados o agujeros de montaje G en el círculo primitivo T.

Ruedas libres externas FXM

RINGSPANN®

para uniones atornilladas en la parte frontal con despegue X de los elementos de bloqueo

Aplicación como

Embrague por adelantamiento

Para aplicaciones como antirretroceso, en operación de giro libre a altas velocidades.

Para aplicaciones como embrague de adelantamiento, en arrastre a bajas velocidades.

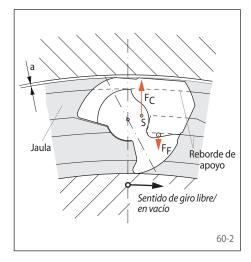
Características

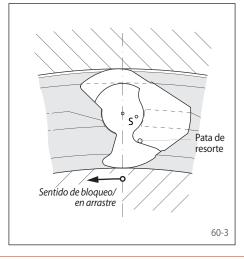
Las ruedas libres externas FXM son ruedas libres sin soporte propio y con elementos de bloqueo con despegue X.

El despegue X de los elementos de bloqueo garantiza el funcionamiento en vacío, libre de desgaste, al girar el aro interior a velocidad alta.

Pares nominales hasta 1230000 Nm.

Diámetros interiores hasta 560 mm. Otros diámetros estándar, estarán disponibles a corto plazo.

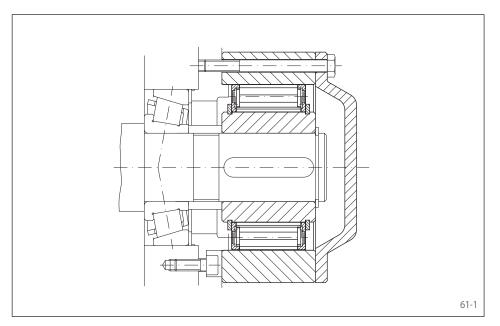

Despegue X de los elementos de bloqueo


El despegue X se utiliza en antirretrocesos y embragues por adelantamiento, siempre y cuando en vacío el aro interior gire a altas revoluciones y el arrastre en los embragues por adelantamiento se realice a bajas revoluciones. En vacío, la fuerza centrífuga F_C separa los elementos de bloqueo de la pista de rodadura del aro exterior. En este modo de funcionamiento la rueda libre trabaja libre de desgaste, es decir con una vida útil ilimitada.

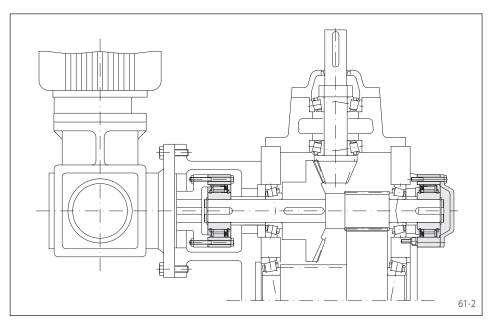
La fig. 60-2 muestra una rueda libre con despegue X en giro libre. Los elementos de bloqueo se encuentran en una jaula unida con el aro interior por fricción y giran con el aro interior. La fuerza centrífuga F_C en el centro de gravedad S gira el elemento de bloqueo en sentido contrario a las agujas del reloj, arrimándolo al reborde de apoyo de la jaula.

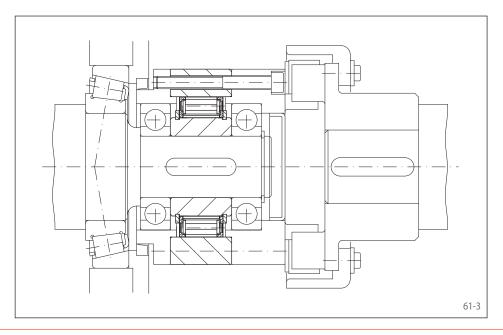
Así se produce la separación "a" entre los elementos de bloqueo y la pista de rodadura del aro exterior, y la rueda libre trabaja sin contacto. Si la velocidad del aro exterior se reduce de tal forma que el efecto de la fuerza centrífuga sobre los ele-

mentos de bloqueo sea inferior a la fuerza de retención de los resortes F_F, los elementos de bloqueo vuelven a su posición inicial, teniendo contacto con el aro exterior y quedando la rueda libre preparada para el bloqueo (fig. 60-3). Al utilizar la rueda libre como embrague por adelantamiento, las revoluciones de arrastre no deben superar el 40% de las revoluciones de despegue.



Ruedas libres externas FXM

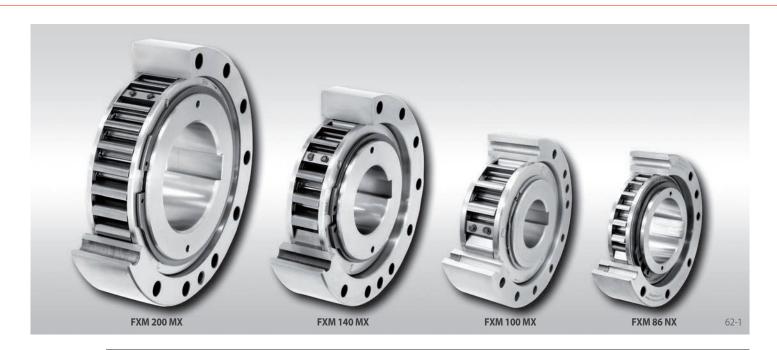

para uniones atornilladas en la parte frontal con despegue X de los elementos de bloqueo


Ejemplo de aplicación

Rueda libre externa FXM 170 - 63 MX con tapa de cierre, utilizada como antirretroceso, montada en el muñón del primer eje intermedio de un reductor de piñón recto en el accionamiento de una cinta transportadora inclinada. Con el motor parado, la cinta transportadora debe retenerse con total seguridad para impedir que ésta retroceda debido al material transportado, ya que de lo contrario se producirían graves daños. Con el eje girando a altas revoluciones en funcionamiento normal (vacío), el despegue X de los elementos de bloqueo garantiza el funcionamiento continuo sin contacto y, por tanto, libre de desgaste.

Ejemplo de aplicación

Dos ruedas libres externas FXM 120 - 50 MX en el reductor de un transportador vertical de cangilones. Adicionalmente al accionamiento principal, el transportador de cangilones dispone de un accionamiento de marcha ultralenta mediante el cual la instalación puede moverse a revoluciones bajas durante los trabajos de mantenimiento. La rueda libre ubicada entre el accionamiento de marcha ultralenta y el reductor principal funciona como embraque por adelantamiento. En marcha ultralenta, la rueda libre trabaja en arrastre. En funcionamiento normal, accionado a través del reductor principal, el aro interior de la rueda libre adelanta a alta velocidad, desacoplando automáticamente el accionamiento de marcha ultralenta. La segunda rueda libre, ubicada en el muñón del primer eje intermedio del reductor principal, funciona como antirretroceso e impide el retroceso del transportador de cangilones cuando la instalación esté parada.


Ejemplo de aplicación

Rueda libre externa FXM 76 - 25 NX, utilizada como embraque por adelantamiento entre el accionamiento de marcha ultralenta y el reductor principal de un molino de cemento. En marcha ultralenta, el acoplamiento de ejes acciona el aro exterior. La rueda libre funciona en arrastre y acciona la instalación a bajas revoluciones a través del reductor principal. En funcionamiento normal (vacío), el aro interior adelanta a altas revoluciones y el accionamiento de marcha ultralenta se desacopla automáticamente. Dadas las altas revoluciones del eje, se utiliza el tipo con despegue X. En funcionamiento en vacío, los elementos de bloqueo trabajan sin contacto y, por tanto, libres de desgaste. La ubicación de los retenes entre la rueda libre y el reductor principal es ventajosa, ya que en funcionamiento normal (vacío) están parados y no producen ningún calentamiento adicional por fricción.

Ruedas libres externas FXM ... NX y FXM ... MX

para uniones atornilladas en la parte frontal con despegue X de los elementos de bloqueo

Antirretroceso
Embrague por adel.

Con despegue X Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro interior a velocidad alta

			Par nominal		Par nominal, conside	erando la oscilación circo	ular existente (T.I.R.)			Revolucio	ones máx.
			teórico						Velocidad de	Aro interior	Aro exterior
D	a da libua	Tiese	✓ 0 A	№ 0,1 A	№ 0,2 A	№ 0,3 A	▼ 0,4 A	✓ 0,5 A	despegue	gira libre/	arrastra
Ku	eda libre	Tipo							aro interior min ⁻¹	adelanta min ⁻¹	:1
			Nm	Nm	Nm	Nm	Nm	Nm	min .	min .	min ⁻¹
FXM	31 - 17	NX	110	110	105	100			890	5 000	356
FXM	38 - 17	NX	180	170	160	150			860	5 000	344
FXM	46 - 25	NX	460	450	440	430			820	5 000	328
FXM	51 - 25	NX	560	550	540	530			750	5 000	300
FXM	56 - 25	NX	660	650	640	630			730	5 000	292
FXM	61 - 19	NX	520	500	480	460			750	5 000	300
FXM	66 - 25	NX	950	930	910	890			700	5 000	280
FXM	76 - 25	NX	1 200	1 170	1 140	1 110			670	5 000	268
FXM	86 - 25	NX	1 600	1 550	1 500	1 450			630	5 000	252
FXM	101 - 25	NX	2 100	2 050	2 000	1 950			610	5 000	244
FXM	85 - 40	MX	2 500	2 500	2 450	2 450	2 450	2 450	430	6 0 0 0	172
FXM	100 - 40	MX	3 700	3 600	3 600	3 500	3 500	3 500	400	4500	160
FXM	120 - 50	MX	7 700	7 600	7 500	7 300	7 300	7 300	320	4000	128
FXM	140 - 50	MX	10 100	10 000	9 800	9 600	9 500	9 500	320	3 000	128
FXM	170 - 63	MX	20 500	20 500	20 000	19 500	19 000	19 000	250	2700	100
FXM	200 - 63	MX	31 000	30 500	30 000	26 500	23 000	20 500	240	2100	96

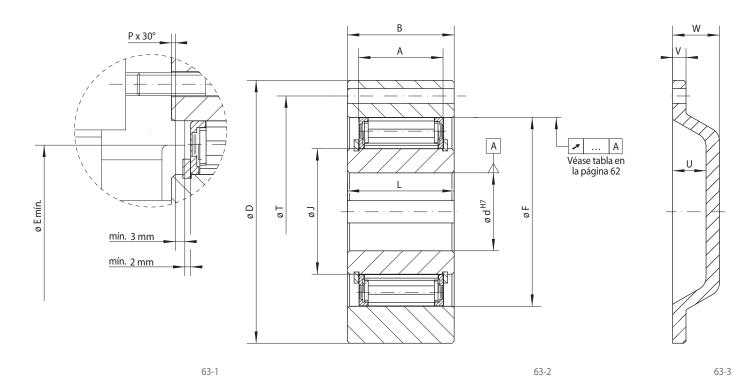
El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario.

Instrucciones de montaje

Las ruedas libres externas no disponen de soporte propio, por lo que la alineación concéntrica de los aros interior y exterior será por parte del cliente. Deben observarse las oscilaciones circulares admisibles. La rueda libre externa FXM se centra en la pieza de conexión a montar por parte del cliente a través de la pista de rodadura del aro exterior F y se atornilla en dicha pieza (véase fig. 63-1). La tolerancia del diámetro de centrado en la pieza complementaria debe ser ISO h6 o h7.

La tolerancia del eje debe ser ISO h6 o j6.

Para el montaje en el muñón del eje pueden suministrarse opcionalmente tapas de cierre (véase fig. 63-3).


El par nominal teórico sólo se aplica cuando la concentricidad de los aros interior y exterior sea ideal. En la práctica, el juego de los rodamientos y los errores de centrado de las piezas contiguas influyen negativamente en la concentricidad. En tales casos se aplican los pares nominales indicadas en la tabla, considerando la oscilación circular existente.

Solicite más información para revoluciones mayores.

Ruedas libres externas FXM ... NX y FXM ... MX

RINGSPANN®

para uniones atornilladas en la parte frontal con despegue X de los elementos de bloqueo

				Diámetro d		Α	В	D	Е	F	G**	J	L	Р	Т	U	V	W	Z**	Peso
Ru	eda libre	Tipo	Está	ndar	máx.				mín.											
			mm	mm	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm		kg
FXM	31 -17	NX	20*		20*	17	25	85	41	55	M 6	31	24	1,0	70	15	6	21	6	0,8
FXM	38 -17	NX	25*		25*	17	25	90	48	62	M 6	38	24	1,0	75	15	6	21	6	0,9
FXM	46 -25	NX	30		30	25	35	95	56	70	M 6	46	35	1,0	82	15	6	21	6	1,3
FXM	51 -25	NX	35		36	25	35	105	62	75	M 6	51	35	1,0	90	15	6	21	6	1,7
FXM	56 -25	NX	35	40	40	25	35	110	66	80	M 6	56	35	1,0	96	15	6	21	8	1,8
FXM	61 -19	NX	35	40	45*	19	27	120	74	85	M 8	61	25	1,0	105	15	6	21	6	1,8
FXM	66 -25	NX	40	45	48	25	35	132	82	90	M 8	66	35	1,0	115	15	8	23	8	2,8
FXM	76 -25	NX	50	55	60*	25	35	140	92	100	M 8	76	35	1,0	125	15	8	23	8	3,1
FXM	86 -25	NX	50	60	70	25	40	150	102	110	M 8	86	40	1,0	132	15	8	23	8	4,2
FXM	101 -25	NX	75		80*	25	50	175	117	125	M 10	101	50	1,0	155	20	8	28	8	6,9
FXM	85 -40	MX	60		65	40	50	175	102	125	M 10	85	60	1,0	155	20	8	28	8	7,4
FXM	100 -40	MX	70		80*	40	50	190	130	140	M 10	100	60	1,5	165	25	10	35	12	8,8
FXM	120 -50	MX	80		95	50	60	210	150	160	M 10	120	70	1,5	185	25	10	35	12	12,7
FXM	140 -50	MX	90		110	50	70	245	170	180	M 12	140	70	2,0	218	25	12	35	12	19,8
FXM	170 -63	MX	100		130	63	80	290	200	210	M 16	170	80	2,0	258	28	12	38	12	33,0
FXM	200 -63	MX	120		155	63	80	310	230	240	M 16	200	80	2,0	278	32	12	42	12	32,0

[■] Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Lubricación

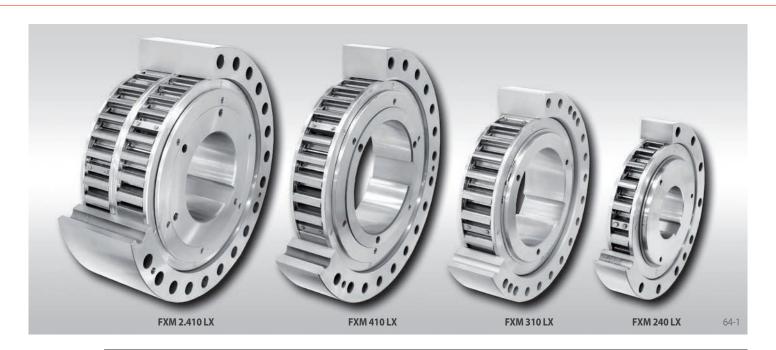
A revoluciones superiores a las de despegue no se necesita lubricación especial y la rueda libre es libre de mantenimiento.

Para el funcionamiento a revoluciones inferiores a las de despegue debe proveerse la lubricación por aceite con la calidad de aceite prescrita.

Ejemplo de pedido

Rueda libre FXM 140 - 50 con despegue X de los elementos de bloqueo con un diámetro de 90 mm y tapa de cierre:

• FXM 140 - 50 MX, d = 90 mm, con tapa de cierre


^{*}Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.

**Z = número de agujeros de fijación para tornillos G en el círculo primitivo T.

Ruedas libres externas FXM ... LX

RINGSPANN®

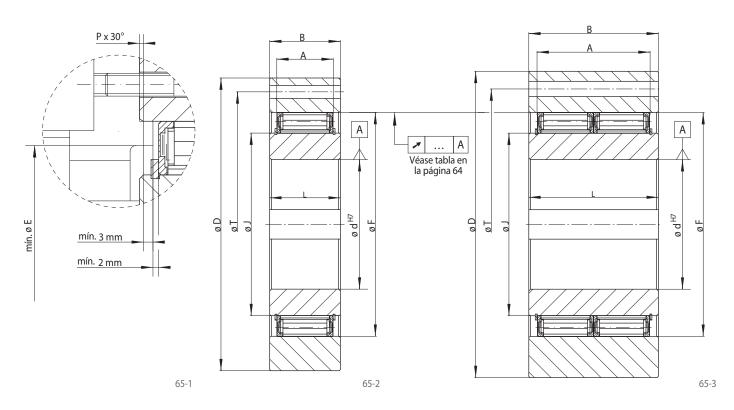
para uniones atornilladas en la parte frontal con despegue X de los elementos de bloqueo

Embrague por adel.

Con despegue X Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro interior a velocidad alta

		Par nominal		Par nomir	al, considerando la os	cilación circular existe	nte (T.I.R.)			Revolucio	nes máx.
		teórico			,				Velocidad de	Aro interior	Aro exterior
									despegue	gira libre/	arrastra
Rueda libre	Tipo	✓ 0 A	✓ 0,1 A	№ 0,2 A	≠ 0,3 A	≠ 0,4 A	✓ 0,5 A	₹ 0,8 A	aro interior	adelanta	
		Nm	Nm	Nm	Nm	Nm	Nm	Nm	min ⁻¹	min ⁻¹	min ⁻¹
FXM 240 - 63	LX	36 500	36 000	35 500	35 500	35 000	34 500	34 000	220	3 000	88
FXM 240 - 96	LX	59 000	58 500	58 500	57 500	57 000	56 500	56 000	220	2500	88
FXM 2.240 - 70	LX	81 000	80 500	80 000	79 500	78 500	77 500	77 000	220	2500	88
FXM 2.240 - 96	LX	117 500	116 500	116 000	114 500	113 500	112 500	111 500	220	2500	88
FXM 260 - 63	LX	44 500	44 000	44 000	43 500	43 000	42 500	41 500	210	2 2 5 0	84
FXM 290 - 70	LX	65 000	64 500	64 000	63 500	62 500	62 000	60 000	200	2 2 5 0	80
FXM 290 - 96	LX	95 500	95 000	94 500	93 500	92 500	91 500	84 500	200	2 2 5 0	80
FXM 2.290 - 70	LX	125 500	124 500	123 500	122 500	121 000	119 500	117 000	200	2 2 5 0	80
FXM 2.290 - 96	LX	183 000	181 500	180 000	178 500	176 500	174 500	171 000	200	2 2 5 0	80
FXM 310 - 70	LX	76 000	75 000	74 500	74 000	73 000	72 500	70 000	195	2 2 5 0	78
FXM 310 - 96	LX	112 000	111 000	110 500	109 500	108 000	107 000	99 000	195	2100	78
FXM 320 - 70	LX	81 000	80 500	80 000	79 500	78 500	78 000	65 500	195	2000	78
FXM 320 - 96	LX	114 000	113 500	112 500	111 500	110 000	109 000	105 500	195	2000	78
FXM 2.320 - 70	LX	158 000	156 500	155 500	154 000	152 500	151 000	143 000	195	2000	78
FXM 2.320 - 96	LX	225 000	223 500	221 500	220 000	217 500	215 000	209 000	195	2000	78
FXM 360 - 100	LX	156 000	155 000	154 000	152 500	144 000	134 500	108 000	180	1 800	72
FXM 2.360 - 73	LX	208 000	206 500	204 500	203 000	201 000	199 000	163 000	180	1 800	72
FXM 2.360 - 100	LX	294 500	292 500	290 000	287 500	284 500	281 500	258 500	180	1 800	72
FXM 410 - 100	LX	194 500	193 500	192 000	190 000	188 500	179 500	145 000	170	1 500	68
FXM 2.410 - 73	LX	263 000	261 000	259 000	257 000	254 500	252 000	209 500	170	1 500	68
FXM 2.410 - 100	LX	389 500	387 000	384 000	380 500	377 000	359 500	289 500	170	1 500	68
FXM 500 - 100	LX	290 000	287 500	285 500	283 000	272 000	255 000	202 000	150	1 000	60
FXM 2.500 - 100	LX	578 000	574 000	570 000	566 000	547 000	508 000	407 000	150	1 000	60
FXM 620 - 105	LX	444 500	441 500	438 500	427 000	400 000	374 000	300 000	135	1 000	54
FXM 2.620 - 105	LX	888 000	882 000	876 000	860 000	807 000	754 000	603 000	135	1 000	54
FXM 750 -105	LX	605 000	601 000	596 000	591 000	586 000	579 000	504 000	125	800	50
FXM 2.750 -105	LX	1 230 000	1 220 000	1 210 000	1 200 000	1 190 000	1 179 000	958 000	125	800	50

Instrucciones de montaje


Las ruedas libres externas no disponen de soporte propio, por lo que la alineación concéntrica de los aros interior y exterior será por parte del cliente. Deben observarse las oscilaciones circulares admisibles.

La rueda libre externa FXM se centra en la pieza de conexión a montar por parte del cliente a través de la pista de rodadura del aro exterior F y se atornilla en dicha pieza (véase fig. 65-1). La tolerancia del diámetro de centrado en la pieza complementaria debe ser ISO h6 o h7.

La tolerancia del eje debe ser ISO h6 o j6.

El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario.
El par nominal teórico sólo se aplica cuando la concentricidad de los aros interior y exterior sea ideal. En la práctica, el juego de los rodamientos y los errores de centrado de las piezas contiguas influyen negativamente en la concentricidad. En tales casos se aplican los pares nominales indicadas en la tabla, considerando la oscilación circular existente. Solicite más información para revoluciones mayores.

para uniones atornilladas en la parte frontal con despegue X de los elementos de bloqueo

Rueda libre	Tipo	Diámetro d máx.	А	В	D	E mín.	F	G*	J	L	Р	T	Z*	Peso
Tucau libre		mm	mm	mm	mm	mm	mm		mm	mm	mm	mm		kg
FXM 240 - 63	LX	185	63	80	400	280	310	M 20	240	90	2,0	360	12	60
FXM 240 - 96	LX	185	96	125	420	280	310	M 24	240	120	2,0	370	16	95
FXM 2.240 - 70	LX	185	140	160	412	280	310	M 20	240	160	2,0	360	24	120
FXM 2.240 - 96	LX	185	192	240	425	280	310	M 24	240	240	2,0	370	24	200
FXM 260 - 63	LX	205	63	80	430	300	330	M 20	260	105	2,0	380	16	75
FXM 290 - 70	LX	230	70	80	460	330	360	M 20	290	105	2,0	410	16	90
FXM 290 - 96	LX	230	96	110	460	330	360	M 20	290	120	2,0	410	16	91
FXM 2.290 - 70	LX	230	140	160	480	330	360	M 24	290	160	2,0	410	18	170
FXM 2.290 - 96	LX	230	192	240	490	330	360	M 30	290	240	2,0	425	20	260
FXM 310 - 70	LX	240	70	125	497	360	380	M 20	310	110	3,0	450	24	135
FXM 310 - 96	LX	240	96	125	497	360	380	M 20	310	120	3,0	450	24	145
FXM 320 - 70	LX	250	70	80	490	360	390	M 24	320	105	3,0	440	16	105
FXM 320 - 96	LX	250	96	120	520	360	390	M 24	320	120	3,0	440	16	150
FXM 2.320 - 70	LX	250	140	180	505	360	390	M 24	320	180	3,0	440	24	200
FXM 2.320 - 96	LX	250	192	240	530	360	390	M 30	320	240	3,0	460	24	310
FXM 360 - 100	LX	280	100	120	540	400	430	M 24	360	125	3,0	500	24	170
FXM 2.360 - 73	LX	280	146	210	550	400	430	M 24	360	210	3,0	500	24	270
FXM 2.360 - 100	LX	280	200	250	580	400	430	M 30	360	250	3,0	500	24	380
FXM 410 - 100	LX	300	100	120	630	460	480	M 24	410	125	3,0	560	24	245
FXM 2.410 - 73	LX	300	146	210	630	460	480	M 24	410	210	3,0	560	24	400
FXM 2.410 - 100	LX	300	200	220	630	460	480	M 30	410	220	3,0	560	24	440
FXM 500 - 100	LX	360	100	130	780	550	570	M 30	500	130	3,0	680	24	310
FXM 2.500 - 100	LX	360	200	230	780	550	570	M 30	500	230	3,0	680	24	560
FXM 620 - 105	LX	460	105	140	980	670	690	M 30	620	140	3,0	840	24	570
FXM 2.620 - 105	LX	460	210	240	980	670	690	M 36	620	240	3,0	840	24	990
FXM 750 - 105	LX	560	105	150	1 350	800	820	M 42	750	150	3,0	1 000	24	1 330
FXM 2.750 - 105	LX	560	210	250	1 350	800	820	M 42	750	250	3,0	1 000	24	2 620

Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10. * Z = número de agujeros de fijación para tornillos G en el círculo primitivo T.

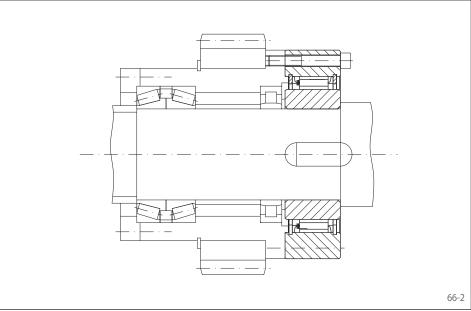
Lubricación

A revoluciones superiores a las de despegue no se necesita lubricación especial y la rueda libre es libre de mantenimiento.

Para el funcionamiento a revoluciones inferiores a las de despegue debe proveerse la lubricación por aceite con la calidad de aceite prescrita.

Ejemplo de pedido

Rueda libre FXM 240 - 63 con despegue X de los elementos de bloqueo con un diámetro de


• FXM 240 - 63 LX, d = 185 mm

Ruedas libres externas FON

RINGSPANN®

para uniones atornilladas en la parte frontal con elementos de bloqueo en tres tipos

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las ruedas libres FON son ruedas libres con elementos de bloqueo sin soporte propio.

Aparte del tipo estándar, se dispone de dos tipos más para una elevada duración de vida y alta exactitud de indexación.

Pares nominales hasta 25 000 Nm.

Diámetros interiores hasta 155 mm. Otros diámetros estándar, estarán disponibles a corto plazo.

Ejemplo de aplicación

Rueda libre FON 57 SFT, utilizada como embrague por adelantamiento, ubicada sobre el eje principal de accionamiento de una máquina embaladora. El aro exterior está unido mediante una rueda dentada con un accionamiento de marcha ultralenta que se utiliza en el ajuste. En este modo de funcionamiento, la rueda libre trabaja en arrastre y acciona la máquina a revoluciones muy bajas a través del eje principal. En funcionamiento normal (vacío), el aro interior adelanta y el accionamiento de marcha ultralenta se desacopla automáticamente. Los elementos de bloqueo RIDUVIT® garantizan una elevada duración de vida.

Instrucciones de montaje

Las ruedas libres externas FON no disponen de soporte propio, por lo que la alineación concéntrica de los aros interior y exterior será por parte del cliente. Deben observarse las oscilaciones circulares admisibles.

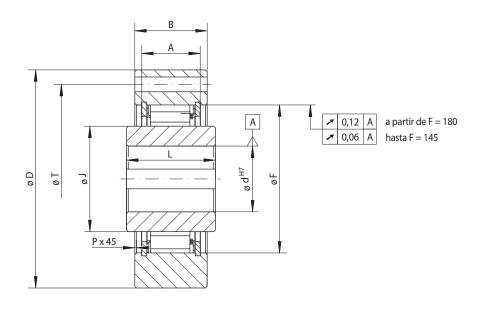
La rueda libre externa FON se centra en la pieza de conexión a montar por parte del cliente a través de la pista de rodadura del aro exterior F y se atornilla en dicha pieza. La tolerancia del diámetro de centrado en la pieza complementaria debe ser ISO h6.

La tolerancia del eje debe ser ISO h6 o j6.

Lubricación

Los tipos estándar y RIDUVIT® deben proveerse con lubricación por aceite de la calidad prescrita. En los tipos con elementos de bloque con despegue Z, a revoluciones superiores a las de despegue no se necesita lubricación especial y la rueda libre es libre de mantenimiento. Para el funcionamiento a revoluciones inferiores a las de despegue debe proveerse la lubricación por aceite con la calidad de aceite prescrita.

Ejemplo de pedido


Rueda libre FON 72 tipo RIDUVIT® de un diámetro de 45 mm:

• FON 72 SFT, d = 45 mm

Ruedas libres externas FON

RINGSPANN®

para uniones atornilladas en la parte frontal con elementos de bloqueo en tres tipos

67-1

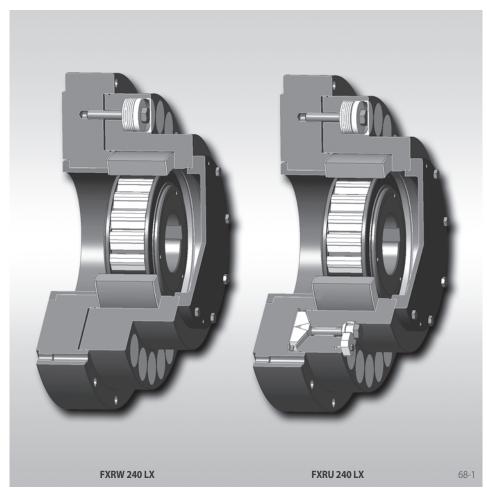
ore de avance gue por adel. Intirretroceso	Estándar Para uso universal	RIDUVIT® Para elevada duración de vida mediante recubrimiento de los elementos de bloqueo	Con despegue Z Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro exterior a velocidad alta
Ruedalik Embra			

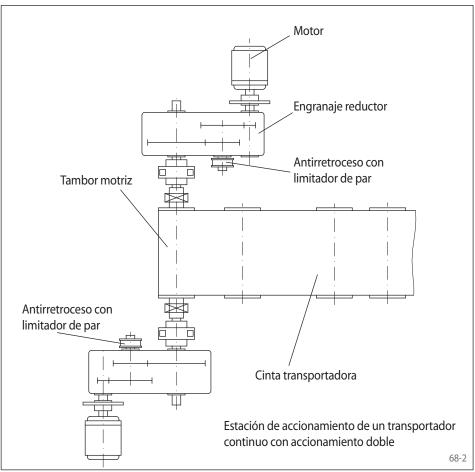
Rueda libre	Tipo	Par nominal M _N Nm	Revolucio Aro interior gira libre/ adelanta min ⁻¹	nes máx. Aro exterior gira libre/ adelanta min ⁻¹	Tipo	Par nominal M _N Nm	Revolucio Aro interior gira libre/ adelanta min ⁻¹	nes máx. Aro exterior gira libre/ adelanta min ⁻¹	Tipo	Par nominal M _N Nm	Velocidad de despegue aro exterior min ⁻¹	Revolucio Aro exterior gira libre/ adelanta min ⁻¹	nes máx. Aro interior arrastra min ⁻¹
FON 37	SF	220	2 500	2 600	SFT	220	2 500	2 600	SFZ	180	2900	3 700	340
FON 44	SF	315	1 900	2 200	SFT	315	1 900	2 200	SFZ	250	2250	3 000	320
FON 57	SF	630	1 400	1 750	SFT	630	1 400	1 750	SFZ	630	2000	2 200	560
FON 72	SF	1 250	1 120	1 600	SFT	1 2 5 0	1 120	1 600	SFZ	1 250	1550	1 850	488
FON 82	SF	1 900	1 025	1 450	SFT	1 900	1 025	1 450	SFZ	1 700	1 450	1 600	580
FON 107	SF	2800	880	1 250	SFT	2800	880	1 250	SFZ	2500	1300	1 350	520
FON 127	SF	6300	800	1 150	SFT	6300	800	1 150	SFZ	5 0 0 0	1 200	1 200	480
FON 140	SF	10 000	750	1 100	SFT	10000	750	1 100	SFZ	10000	950	1 150	380
FON 170	SF	16000	700	1 000	SFT	16000	700	1 000	SFZ	14000	880	1 000	352
FON 200	SF	25 000	630	900	SFT	25 000	630	900	SFZ	20 000	680	900	272

El par máximo transmisible es el doble del par nominal indicado. Ver la pág. 14 para la determinación del par necesario.

Los pares máximos transmisibles se aplican a las condiciones de montaje para ruedas libres completas. En ocasiones y conociendo las condiciones de montaje reales, pueden admitirse unas revoluciones mayores.

	Diáme	etro d	А	В	D	F	G**	J	L	Р	T	Z**	Peso
Rueda libre	Estándar	máx.											
	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm		kg
FON 37	20	25*	18,5	25	85	55	M 6	37	35	0,5	70	6	0,8
FON 44	25	32*	18,5	25	95	62	M 6	44	35	0,5	80	8	1,0
FON 57	30	42*	23,5	30	110	75	M 8	57	45	0,5	95	8	1,7
FON 72	40	55*	29,5	38	132	90	M 8	72	60	1,0	115	12	3,0
FON 82	55	65*	31,0	40	145	100	M 10	82	60	1,0	125	12	4,0
FON 107	70	85*	33,0	45	170	125	M 10	107	65	1,0	150	12	6,0
FON 127	90	100*	58,0	68	200	145	M 12	127	75	1,0	180	12	11,5
FON 140	100	115*	58,0	68	250	180	M 16	140	75	1,0	225	12	17,0
FON 170	120	140*	60,0	70	290	210	M 16	170	75	1,0	258	16	24,0
FON 200	140	155	73,0	85	320	240	M 16	200	85	1,5	288	16	34,0


Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.


Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10. * Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10. ** Z = número de agujeros de fijación para tornillos G en el círculo primitivo T.

Ruedas libres externas FXR ...

RINGSPANN®

para uniones atornilladas en la parte frontal con despegue X y limitación de par

Aplicación como

Antirretroceso

en transportadores continuos con accionamiento múltiple, los cuales se encuentran provistos de un antirretroceso propio.

Características

Las ruedas libres externas FXR ... son ruedas libres sin soporte propio con elementos de bloqueo con despegue X. Se componen de las ruedas libres externas FXM (ver páginas 60 a 65) y un limitador de par adicional.

El despegue X de los elementos de bloqueo garantiza el funcionamiento en vacío, libre de desgaste, al girar el aro interior a velocidad alta.

En instalaciones transportadoras continuas con varias unidades, es importante tener en cuenta el problema de la distribución desigual del par que sufren las unidades y antirretrocesos individuales. Al parar la instalacion, la totalidad del par recuperador actúa, debido a los diferentes juegos y elasticidades en los accionamientos, principalmente sobre un solo antirretroceso.

Si se utilizaran unos antirretrocesos sin limitación de par, los diferentes reductores y sus correspondientes antirretrocesos deberían, por razones de seguridad, diseñarse de acuerdo con el par recuperador total de la instalación.

El problema de la distribución desigual del par recuperador se soluciona mediante los antirretrocesos FXR ... con limitación de par. Al sobrepasar el par predeterminado, el limitador de par integrado en el antirretroceso se desliza hasta que se hayan activado sucesivamente los demás antirretrocesos, logrando así la distribución del par recuperador total a los diferentes antirretrocesos y reductores. Asimismo, se reducen los picos de par dinámicos del proceso de bloqueo, protegiendo los reductores contra picos de par perjudiciales. Los antirretrocesos FXR ... con limitación de par permiten la utilización de unos reductores de dimensiones reducidas.

Ventajas

- Protección de los reductores contra la distribución desigual del par en accionamientos múltiples.
- Protección de los reductores contra los picos de par dinámicos durante el proceso de bloqueo.
- Utilización de reductores de dimensiones reducidas sin pérdida de seguridad.
- Protección de los antirretrocesos, ya que los picos de par se suavizan mediante un breve deslizamiento.

Ruedas libres externas FXR ...

RINGSPANN®

para uniones atornilladas en la parte frontal con despegue X y limitación de par

Rueda libre externa FXRW y FXRV con limitación de par sin liberación controlable

Esta serie de antirretrocesos con limitación de par representa el tipo básico. Su estructura y los tipos disponibles se detallan en la página 70 y 72.

Rueda libre externa FXRU y FXRT con limitación de par y liberación controlable

La estructura es igual a la de la serie FXRW o FXRV, disponiendo adicionalmente de un dispositivo de liberación sensible controlable. Su estructura, la descripción de las funciones del dispositivo de liberación y los tipos estándar disponibles se detallan en la página 71 y 73.

Los antirretrocesos con dispositivo de liberación controlable se utilizan cuando es necesario aflojar controladamente el tensado de la cinta o de la instalación, por un bloqueo de la polea de inversión o al requerir el retroceso limitado del transportador.

Cálculo del par de determinación

El siguiente cálculo del par de determinación, se aplica a las instalaciones de accionamiento múltiple, donde a cada unidad se le aplica la misma potencia motor. Póngase en contacto con nosotros en caso de motores con diferentes potencias.

Si el par recuperador por unidad $\rm M_L$ es conocido, entonces la selección del par de determinación $\rm M_A$ para el antirretroceso correspondiente, debe calcularse de la siguiente manera:

$$M_{\Delta} = 1.2 \cdot M_{I}$$
 [Nm]

Cuando sólo se conoce la potencia nominal por unidad P_0 [kW] se aplica:

$$M_A = 1.2 \cdot 9550 \cdot F^2 \cdot P_0 / n_{SP} [Nm]$$

Los elementos de estas ecuaciones significan lo siguiente:

M_A = par de determinación del antirretroceso correspondiente [Nm]

$$M_I = 9550 \cdot F \cdot P_I / n_{SP} [Nm]$$

 par recuperador estático de la carga para cada unidad con relación al eje del antiretroceso correspondiente [Nm] P_L = carrera de la instalación por unidad bajo plena carga [kW]

 altura de transporte [m] multiplicada por la carga transportada por segundo dividido por el número de unidades [kN/s]

P₀ = potencia motor nominal [kW]

n_{SP} = revoluciones del eje del antirretroceso [min⁻¹]

F = Factor de selección

Una vez calculado M_A, el tamaño del correspondiente antirretroceso debe seleccionarse según las tablas del catálogo con las siguientes condiciones:

$$M_R \geq M$$

M_R = par de deslizamiento máx. del antirretroceso según las tablas en las páginas 70 a 73 [Nm] Valores orientativos para F:

Tipo de instalación	F	F ²
Cintas transportadoras, inclinación de hasta 6°	0,71	0,50
Cintas transportadoras, inclinación de hasta 8°	0,78	0,61
Cintas transportadoras, inclinación de hasta 10°	0,83	0,69
Cintas transportadoras, inclinación de hasta 12°	0,86	0,74
Cintas transportadoras, inclinación de hasta 15°	0,89	0,79
Bombas rascadoras de tornillo sinfín	0,93	0,87
Molinos cónicos, tambores de secado	0,85	0,72
Transportadores de cangilones, elevadores	0,92	0,85
Trituradoras de martillos	0,93	0,87

La suma de los pares de deslizamiento de los antirretrocesos debe ser 1,2 veces mayor que el par recuperador estático de la instalación (incluso con sobrecarga). Los pares indicados en las tablas son valores máximos. Pueden ajustarse valores inferiores. En caso de dudas, solicite más información, dando la descripción exacta de la instalación e indicando las condiciones de servicio. Rogamos utilicen el cuestionario en la página 112.

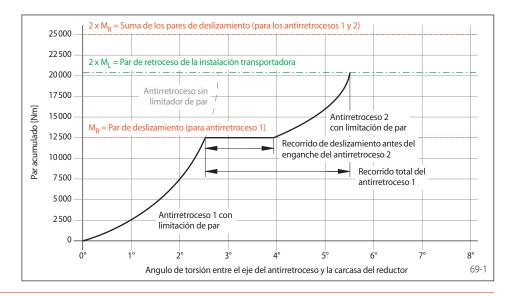
Ejemplo

Sistema doble accionamiento
Potencia del motor por unidad: P₀ = 630 kW
Tipo de instalación:

Cinta transportadora con 8° de inclinación $=> F^2 = 0.61$

Velocidad por eje del antirretroceso:

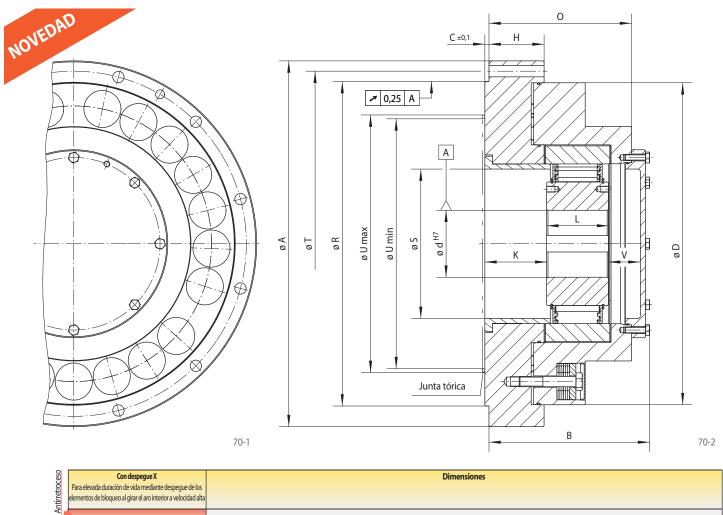
$$n_{SD} = 360 \, \text{min}^{-1}$$


Selección del par de determinación para el antiretroceso correspondiente:

$$M_A = 1,2.9550.0,61.630/360[Nm]$$

La siguiente regla se aplica en todos los casos:

$$M_R \geq M_A$$


=> FXRU o FXRW 140 - 63 MX son los antiretrocesos económicamente adecuados.

Ruedas libres externas FXRW – la mayor potencia

para uniones atornilladas en la parte frontal con despegue X y limitación de par

ntirretroces		elevada duració	Con despegue X In de vida mediante o al girar el aro interi									Din	nensione	es.							
⋖										Law											
	Rue	Par de desliza- miento	Velocidad de	Revoluciones máx.	Diámetro d	A	В	C	D	G**	Н	K	L	0	R	5	Т	U***	V	Z**	Peso

		i ai uc		Nevoluciones	Dian	icuo	/1	U		U	9		11	_	0	11	ا د		0		v	_	1 030
	Rue	desliza-	Velocidad de	máx.	(t																	
	da	miento	despegue	Aro interior																			
Rueda libre	libre	M _R	aro interior	gira libre	Estándar	max.													mín.	máx.			
		Nm	min ⁻¹	min ⁻¹	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		kg
FXRW 85 - 50	MX	3 300	430	6000		65	330	176	6	285	M12	54	67,5	60	151	280	110	308	165	215	38	6	60
FXRW 100 - 50	MX	4700	400	4500		80*	350	181	6	305	M12	59	67,5	70	156	300	125	328	180	240	33	6	73
FXRW 120 - 50	MX	7300	320	4000		95	400	192	6	345	M16	69	77,5	70	167	340	145	373	200	260	34	6	101
FXRW 140 - 63	MX	12500	320	3 0 0 0		110	430	227	6	375	M16	79	89,5	80	192	375	165	403	220	280	48	6	133
FXRW 170 - 63	MX	19000	250	2700	110	130	500	232	6	445	M16	89	100	80	205	425	196	473	250	425	36	6	197
FXRW 200 - 63	MX	30 000	240	2100	150	155	555	250	6	500	M16	99	110	80	223	495	226	528	275	495	43	6	274
FXRW 240 - 96	LX	56000	220	2500		185	710	312	8	625	M20	107	120	120	277	630	290	670	355	630	61	12	525
FXRW 260 - 96	LX	65 000	210	2 2 5 0		205	750	327	8	660	M20	117	130	120	302	670	310	710	375	670	66	12	619
FXRW 290 - 96	LX	90 000	200	2250		230	850	340	8	735	M24	127	140	120	302	730	330	800	405	730	65	12	852
FXRW 310 - 96	LX	107 000	195	2100		240	900	352	10	785	M24	127	150	120	322	775	355	850	435	775	72	12	1016

Pares

Las ruedas libres externas FXRW se suministran con el limitador de par preajustado al par de deslizamiento M_R. El momento recuperador estático M₁ de la instalación (incluso con sobrecarga) no debe alcanzar en ningún caso la suma del par de deslizamiento $\boldsymbol{M}_{\boldsymbol{R}}$ de los antirretrocesos previstos. Los pares M_R indicados en la tabla son valores máximos, pudiendo ajustarse valores inferiores.

Instrucciones de montaje

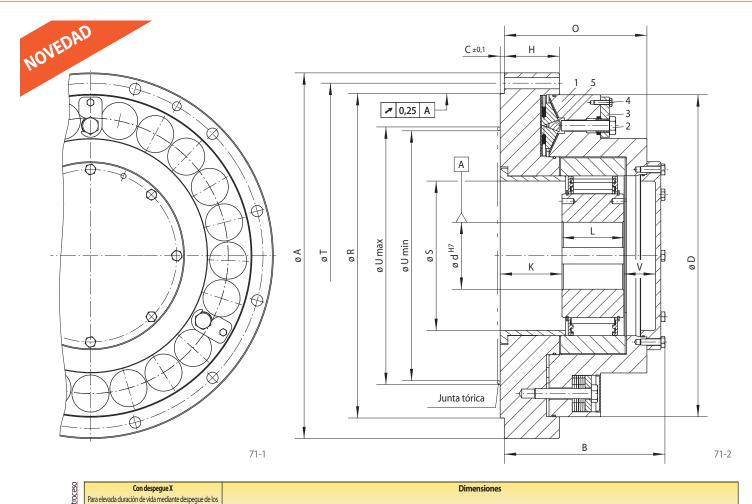
Las ruedas libres externas FXRW no disponen de soporte propio, por lo que hay que garantizar que la oscilación circular entre el diámetro R de centrado y el diámetro d del eje no sea superior a 0,25 mm.

La cota C se aplica a la rueda libre externa. La profundidad de centrado en la pieza de conexión a montar por parte del cliente debe ser como mínimo C +0,2 mm. La tolerancia del diámetro de centrado R en la pieza complementaria debe ser ISO H7.

La tolerancia del eje debe ser ISO h6 o j6.

Ejemplo de pedido

Rueda libre FXRW 170 - 63 MX con despegue X de los elementos de bloqueo con un diámetro de 130 mm y un par de deslizamiento de 19 000 Nm:


FXRW 170 - 63 MX, d = 130 mm, $M_{\rm p} = 19\,000\,{\rm Nm}$

Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10. * Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10. ** Z = número de agujeros de fijación para tornillos G (DIN EN ISO 4762) en el círculo primitivo T. *** Área de hermetización de la junta tórica Solicite información acerca de otros tamaños de ruedas libres. • Solicite información acerca de otros tamaños de ruedas libres.

Ruedas libres externas FXRU – la mayor potencia

RINGSPANN[®]

para uniones atornilladas en la parte frontal con despegue X, limitación de par y dispositivo de liberación

ntirret	elemen	itos de bloque	o al girar el aro inte	rior a velocidad alta																			
≪																							
		Par de	Wile day day	Revoluciones	Diám		Α	В	С	D	G**	Н	K	L	0	R	S	T	U*	**	V	Z**	Peso
		desliza- miento	Velocidad de despegue	máx. Aro interior		1																	
Rueda libre	Tipo	M _R	aro interior	gira libre	Estándar	max.													mín.	máx.			l.e.
		Nm	min ⁻¹	min ⁻¹	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		kg
FXRU 85 - 50	MX	3 300	430	6000		65	330	176	6	285	M12	54	67,5	60	151	280	110	308	165	215	38	6	62
FXRU 100 - 50	MX	4700	400	4500		80*	350	181	6	305	M12	59	67,5	70	156	300	125	328	180	240	33	6	74
FXRU 120 - 50	MX	7300	320	4000		95	400	192	6	345	M16	69	77,5	70	167	340	145	373	200	260	34	6	101
FXRU 140 - 63	MX	12500	320	3 0 0 0		110	430	227	6	375	M16	79	89,5	80	192	375	165	403	220	280	48	6	133
FXRU 170 - 63	MX	19000	250	2700	110	130	500	232	6	445	M16	89	100	80	205	425	196	473	250	425	36	6	197

M16

M20

M24

M24 Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10. * Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10. ** Z = número de agujeros de fijación para tornillos G (DIN EN ISO 4762) en el círculo primitivo T. *** Área de hermetización de la junta tórica Solicite información acerca de otros tamaños de ruedas libres. • Solicite información acerca de otros tamaños de ruedas libres.

M20

Pares

FXRU 200 - 63

FXRU 240 - 96

FXRU 260 - 96

FXRU 290 - 96

FXRU 310 - 96 LX

MX

65 000

90 000

107 000

2 2 5 0

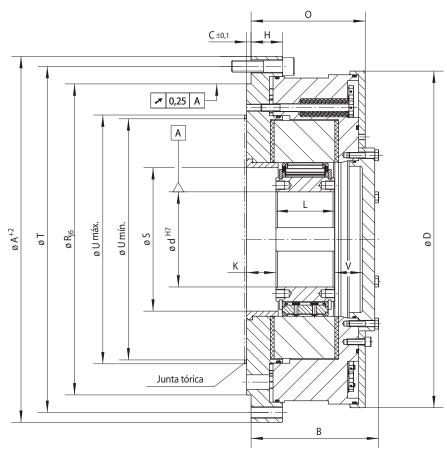
Las ruedas libres externas FXRU se suministran con el limitador de par preajustado al par de deslizamiento M_R. El momento recuperador estático M_I de la instalación (incluso con sobrecarga) no debe alcanzar en ningún caso la suma del par de deslizamiento M_R de los antirretrocesos previstos. Los pares M_R indicados en la tabla son valores máximos, pudiendo ajustarse valores inferiores.

Instrucciones de montaje

Las ruedas libres externas FXRU no disponen de soporte propio, por lo que hay que garantizar que la oscilación circular entre el diámetro R de centrado y el diámetro d del eje no sea superior a 0.25 mm.

La dimensión C se aplica a la rueda libre externa. La profundidad de centrado en la pieza de conexión a montar por parte del cliente debe ser como mínimo C +0,2 mm. La tolerancia del diámetro de centrado R en la pieza complementaria debe ser ISO H7.

La tolerancia del eje debe ser ISO h6 o j6.


Funcionamiento del dispositivo de liberación

La liberación sensible controlada se compone principalmente de tres tornillos especiales (2) fijados en el soporte del resorte (1), las pestañas de seguridad (3) los sistemas de cuña (5). Para liberar el antirretroceso, primeramente se deben aflojar ligeramente los tornillos especiales (2) y tornillos de cabeza hexagonal (4). Después, hay que aflojar las pestañas de seguridad (3) para fijarlas en su posición con los tornillos de cabeza hexagonal (4). Los tornillos especiales (2) pueden ser apretados contra el sistema de cuña (5) y así podemos iniciar la liberación sensible controlada.

Ruedas libres externas FXRV

para uniones atornilladas en la parte frontal con despegue X y limitación de par

Con despegue X
Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro interior a velocidad alta

		Par de		Revoluciones	Diám	netro	Α	В	С	D	G**	Н	K	L	0	R	S	T	U*	××	V	Z**	Peso
		desliza-	Velocidad de	máx.	(ł																	
		miento	despegue	Aro interior																			
Rueda libre	Tipo	M _R	aro interior	gira libre	Estándar	máx.													mín.	máx.			
		Nm	min ⁻¹	min ⁻¹	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		kg
FXRV 85 - 40	MX	1 400	430	6000	60	65	330	143	6	295	M 12	37	29	60	127	280	110	308	165	215	43	6	57
FXRV 100 - 50	MX	2 300	400	4500	70	80*	350	150	6	311	M 12	39	31	70	134	300	125	328	180	240	38	6	65
FXRV 120 - 50	MX	3 400	320	4000	80	95	400	150	6	360	M 16	36	31	70	134	340	145	373	200	260	38	6	86
FXRV 140 - 50	MX	4 500	320	3 0 0 0	90	110	430	160	6	386	M 16	36	31	70	134	375	165	403	220	280	50	6	102
FXRV 170 - 63	MX	9 000	250	2700	100	130	500	175	6	460	M 16	43	40	80	156	425	196	473	250	340	38	6	163
FXRV 200 - 63	MX	12 500	240	2100	110	155	555	175	6	516	M 16	49	40	80	156	495	226	528	275	390	38	6	205
FXRV 240 - 63	LX	21 200	220	3 0 0 0		185	710	195	8	630	M 20	50	50	90	170	630	290	670	355	455	45	12	347
FXRV 260 - 63	LX	30 000	210	2500		205	750	205	8	670	M 20	50	50	105	183	670	310	710	375	500	40	12	411
FXRV 290 - 70	LX	42 500	200	2500		230	850	218	8	755	M 24	52	50	105	190	730	335	800	405	560	48	12	562
FXRV 310 - 96	LX	53 000	195	2100		240	900	260	10	800	M 24	63	63	120	240	775	355	850	435	600	69	12	792
FXRV 360 - 100	LX	75 000	180	1800		280	975	267	10	870	M 30	63	63	125	243	850	400	925	485	670	71	12	942
FXRV 410 - 100	LX	100 000	170	1500		300	1060	267	10	950	M 30	63	63	125	243	950	450	1000	535	750	71	12	1053

Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10. * Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10. ** Z = número de agujeros de fijación para tornillos G (DIN EN ISO 4762) en el círculo primitivo T. *** Área de hermetización de la junta tórica Solicite información acerca de otros tamaños de ruedas libres. • Véase la página 69 para la determinación del par de selección. Solicite información acerca de otros tamaños de ruedas libres.

Pares

Las ruedas libres externas FXRV se suministran con el limitador de par preajustado al par de deslizamiento M_R . El momento recuperador estático M_L de la instalación (incluso con sobrecarga) no debe alcanzar en ningún caso la suma del par de deslizamiento M_R de los antirretrocesos previstos. Los pares M_R indicados en la tabla son valores máximos, pudiendo ajustarse valores inferiores.

Instrucciones de montaje

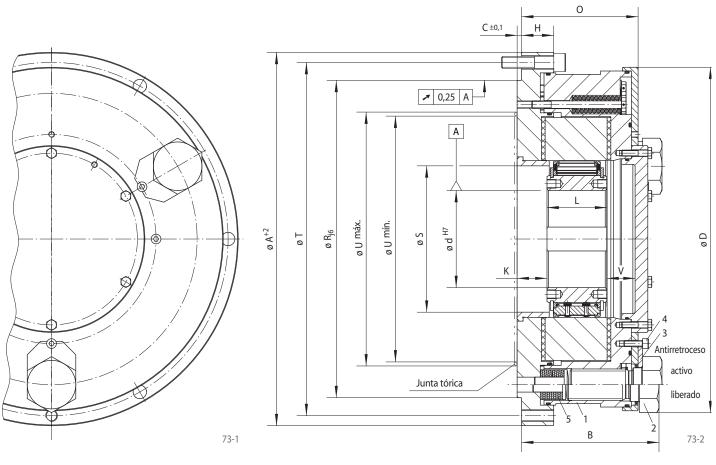
Las ruedas libres externas FXRV no disponen de soporte propio, por lo que hay que garantizar que la oscilación circular entre el diámetro R de centrado y el diámetro d del eje no sea superior a 0,25 mm.

La cota C se aplica a la rueda libre externa. La profundidad de centrado en la pieza de conexión a montar por parte del cliente debe ser como mínimo C +0,2 mm. La tolerancia del diámetro de centrado R en la pieza complementaria debe ser ISO H7.

La tolerancia del eje debe ser ISO h6 o j6.

Ejemplo de pedido

Rueda libre FXRV 170 - 63 MX con despegue X de los elementos de bloqueo con un diámetro de 100 mm y un par de deslizamiento de 9 000 Nm:


72-1

FXRV 170 - 63 MX, d = 100 mm,
 M_R = 9 000 Nm

Ruedas libres externas FXRT

RINGSPANN®

para uniones atornilladas en la parte frontal con despegue X, limitación de par y dispositivo de liberación

etroceso		elevada duració		despegue de los								Din	nensione	:S							
Antire	eleme	ntos de bloque	o al girar el aro inter	ior a velocidad alta																	
		Par de	Velocidad de	Revoluciones máx	Diámetro	А	В	С	D	G**	Н	К	L	0	R	S	T	U***	V	Z**	Peso

		Par de		Revoluciones	Dián	netro	A	В	C	D	G**	H	K	L	0	R	5	T	U*	**	V	Z**	Peso
		desliza-	Velocidad de	máx.		b																	
		miento	despegue	Aro interior																			
Rueda libre	Tipo	M _R	aro interior	gira libre	Estándar	máx.													mín.	máx.			
		Nm	min ⁻¹	min ⁻¹	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		kg
FXRT 85 - 40	MX	1 400	430	6000	60	65	330	148	6	295	M 12	37	29	60	127	280	110	308	165	215	43	6	60
FXRT 100 - 50	MX	2 300	400	4500	70	80*	350	159	6	311	M 12	39	31	70	134	300	125	328	180	240	38	6	66
FXRT 120 - 50	MX	3 400	320	4000	80	95	400	159	6	360	M 16	36	31	70	134	340	145	373	200	260	38	6	87
FXRT 140 - 50	MX	4 500	320	3000	90	110	430	163	6	386	M 16	36	31	70	134	375	165	403	220	280	50	6	104
FXRT 170 - 63	MX	9 000	250	2700	100	130	500	188	6	460	M 16	43	40	80	156	425	196	473	250	340	38	6	166
FXRT 200 - 63	MX	12 500	240	2100	110	155	555	188	6	516	M 16	49	40	80	156	495	226	528	275	390	38	6	209
FXRT 240 - 63	LX	21 200	220	3000		185	710	210	8	630	M 20	50	50	90	170	630	290	670	355	455	45	12	355
FXRT 260 - 63	LX	30 000	210	2500		205	750	223	8	670	M 20	50	50	105	183	670	310	710	375	500	40	12	418
FXRT 290 - 70	LX	42 500	200	2500		230	850	243	8	755	M 24	52	50	105	190	730	335	800	405	560	48	12	574
FXRT 310 - 96	LX	53 000	195	2100		240	900	293	10	800	M 24	63	63	120	240	775	355	850	435	600	69	12	805

Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10. * Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.

** 7 = número de aquieros de filación para tornillos G (DIN EN ISO 4762) en el círculo primitivo T *** Área de bermetización de la junta tórica Solicita información acerca de otros tr

Pares

Las ruedas libres externas FXRT se suministran con el limitador de par preajustado al par de deslizamiento M_R . El momento recuperador estático M_L de la instalación (incluso con sobrecarga) no debe alcanzar en ningún caso la suma del par de deslizamiento M_R de los antirretrocesos previstos. Los pares M_R indicados en la tabla son valores máximos, pudiendo ajustarse valores inferiores.

Instrucciones de montaje

Las ruedas libres externas FXRT no disponen de soporte propio, por lo que hay que garantizar que la oscilación circular entre el diámetro R de centrado y el diámetro d del eje no sea superior a 0,25 mm. La dimensión C se aplica a la rueda libre externa. La profundidad de centrado en la pieza de conexión a montar por parte del cliente debe ser como mínimo C +0,2 mm. La tolerancia del diámetro de centrado R en la pieza complementaria debe ser ISO H7.

La tolerancia del eje debe ser ISO h6 o j6.

Funcionamiento del dispositivo de liberación

La liberación sensible controlada se compone principalmente de tres tornillos especiales (2) fijados en el soporte del resorte (1) y las pestañas de seguridad (3). Para liberar el antirretroceso, primeramente se deben aflojar ligeramente los tornillos especiales (2). Después, deben ser extraídos los tornillos allen (4) con sus pestañas de seguridad (3). Los tornillos especiales (2) pueden ser apretados contra las arandelas Belleville (5) y así podemos iniciar la liberación sensible controlada.

^{**} Z = número de agujeros de fijación para tornillos G (DIN EN ISO 4762) en el círculo primitivo T. *** Área de hermetización de la junta tórica Solicite información acerca de otros tamaños de ruedas libres. • Véase la página 69 el cálculo del par de determinación. Solicite información acerca de otros tamaños de ruedas libres.

Ruedas libres incorporadas FXN

RINGSPANN[®]

para unión por ajuste a presión en el aro exterior con despegue X de los elementos de bloqueo

Aplicación como

Embrague por adelantamiento

Para aplicaciones como antirretroceso, en operación de giro libre a altas velocidades.

Para aplicaciones como embraque de adelantamiento, en arrastre a bajas velocidades.

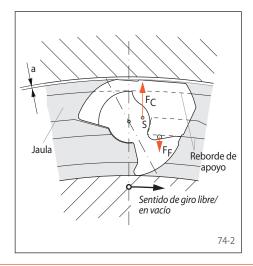
Características

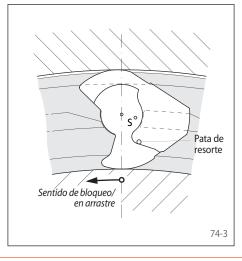
Las ruedas libres integradas FXN son ruedas libres sin soporte propio y con elementos de bloqueo con despegue X.

El despegue X de los elementos de bloqueo garantiza el funcionamiento en vacío, libre de desgaste, al girar el aro interior a velocidad alta.

El aro exterior se fija a presión en la carcasa puesta a disposición por parte del cliente. Así se consiguen unas soluciones de montaje compactas, aptas para espacios reducidos.

Pares nominales hasta 20 500 Nm. El par se transmite en el aro exterior mediante la fijación a presión.

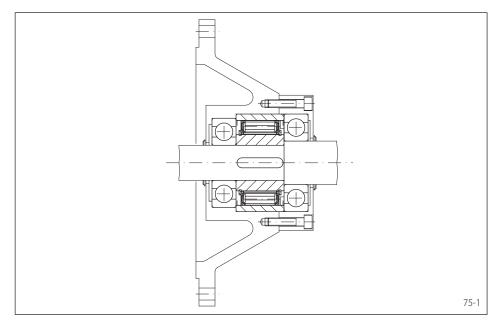

Diámetros interiores hasta 130 mm. Otros diámetros estándar, estarán disponibles a corto plazo.


Despegue X de los elementos de bloqueo

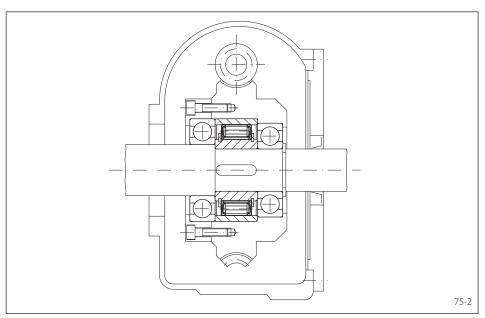
El despegue X se utiliza en antirretrocesos y embraques por adelantamiento, siempre y cuando en vacío el aro interior gire a altas revoluciones y el arrastre en los embragues por adelantamiento se realice a bajas revoluciones. En vacío, la fuerza centrífuga F_C separa los elementos de bloqueo de la pista de rodadura del aro exterior. En este modo de funcionamiento la rueda libre trabaja libre de desgaste, es decir con una vida útil ilimitada.

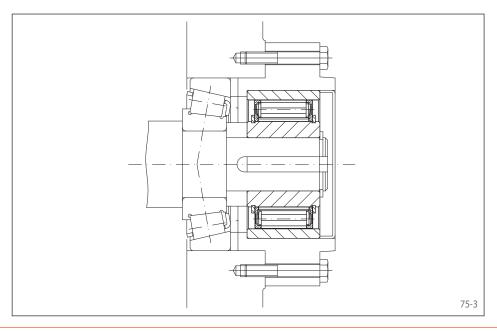
La fig. 74-2 muestra una rueda libre con despegue X en giro libre. Los elementos de bloqueo se encuentran en una jaula unida con el aro interior por fricción y giran con dicho aro. La fuerza centrífuga F_C en el centro de gravedad S gira el elemento de bloqueo en sentido contrario a las agujas del reloj, arrimándolo al reborde de apoyo de la jaula. Así se produce la separación "a" entre los elementos de bloqueo y la pista de rodadura del

aro exterior, y la rueda libre trabaja sin contacto. Si la velocidad del aro exterior se reduce de tal forma que el efecto de la fuerza centrífuga sobre los elementos de bloqueo sea inferior a la fuerza de retención de los resortes F_F, los elementos de bloqueo vuelven a su posición inicial, teniendo contacto con el aro exterior y quedando la rueda libre preparada para el bloqueo (fig. 74-3). Al utilizar la rueda libre como embrague por adelantamiento, las revoluciones de arrastre no deben superar el 40% de las revoluciones de despegue.



Ruedas libres incorporadas FXN

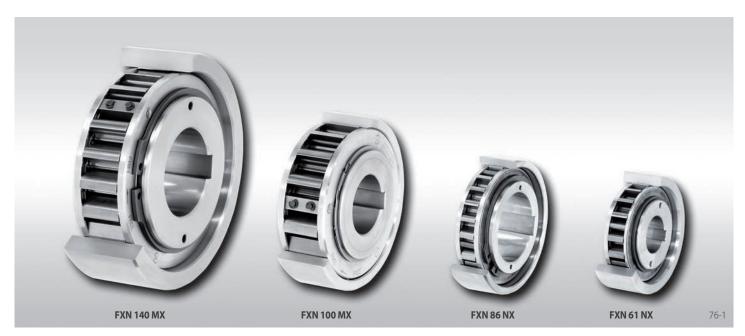

para unión por ajuste a presión en el aro exterior con despegue X de los elementos de bloqueo


Ejemplo de aplicación

Rueda libre incorporada FXN 38 – 17/70 NX, utilizada como antirretroceso en un adaptador de carcasa para el montaje sobre un electromotor. El aro exterior fino fijado a presión en la carcasa facilita el montaje compacto. Con el eje girando a altas revoluciones en funcionamiento normal (vacío), el despegue X de los elementos de bloqueo garantiza el funcionamiento continuo sin contacto y, por tanto, libre de desgaste.

Ejemplo de aplicación

Rueda libre incorporada FXN 66 - 25/100 NX, utilizada como embrague por adelantamiento en el accionamiento de marcha ultralenta de una máquina textil. El aro exterior fino fijado a presión en la rueda helicoidal ofrece una solución compacta. En el ajuste la máquina es accionada mediante el reductor helicoidal y la rueda libre que trabaja en arrastre. En funcionamiento normal (vacío), el aro interior, ubicado en el eje motriz principal que gira a velocidad alta, adelanta y desacopla automáticamente el accionamiento de marcha ultralenta. Dadas las altas revoluciones de adelantamiento del aro interior, se utiliza el tipo con despegue X. En funcionamiento en vacío, los elementos de bloqueo de forma trabajan sin contacto y, por tanto, libres de desgaste.


Ejemplo de aplicación

Rueda libre incorporada FXN 85 - 40/140 MX, utilizada como antirretroceso, montada en el muñón del primer eje intermedio de un engranaje recto en el accionamiento de una cinta transportadora inclinada. Con el motor parado, la cinta transportadora debe retenerse con total seguridad para impedir que ésta retroceda debido al material transportado, ya que de lo contrario se producirían graves daños. Con el eje girando a altas revoluciones en funcionamiento normal (vacío), el despegue X de los elementos de bloqueo garantiza el funcionamiento continuo sin contacto y, por tanto, libre de desgaste.

Ruedas libres incorporadas FXN

para unión por ajuste a presión en el aro exterior con despegue X de los elementos de bloqueo

Con despegue X
Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro interior a velocidad alta

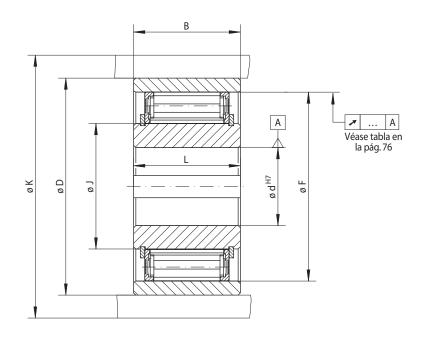
Antirretroceso
Embrague por adel.

		Par nominal		Par nominal, cons	siderando la oscilación o	circular existente			Revolucio	nes máx.
		teórico						Velocidad de	Aro interior	Aro exterior
D 1 111	-	✓ 0 A	№ 0,1 A	№ 0,2 A	№ 0,3 A	₹ 0,4 A	▼ 0,5 A	despegue	gira libre/	arrastra
Rueda libre	Tipo	Nm	Nm	Nm	Nm	Nm	Nm	aro interior min ⁻¹	adelanta min ⁻¹	min ⁻¹
						INITI	NM			
FXN 31 - 17/60	NX	110	110	105	100			890	5 000	356
FXN 31 - 17/62	NX	110	110	105	100			890	5 0 0 0	356
FXN 38 - 17/70	NX	180	170	160	150			860	5 0 0 0	224
FXN 46 - 25/80	NX	460	450	440	430			820	5 0 0 0	328
FXN 51 - 25/85	NX	560	550	540	530			750	5 0 0 0	300
FXN 56 - 25/90	NX	660	650	640	630			730	5 0 0 0	292
FXN 61 - 19/95	NX	520	500	480	460			750	5 0 0 0	300
FXN 61 - 19/106	NX	520	500	480	460			750	5000	300
FXN 66 - 25/100	NX	950	930	910	890			700	5 0 0 0	280
FXN 66 - 25/110	NX	950	930	910	890			700	5000	280
FXN 76 - 25/115	NX	1 200	1 170	1 140	1 110			670	5000	268
FXN 76 - 25/120	NX	1 200	1 170	1 140	1 110			670	5000	268
FXN 86 - 25/125	NX	1 600	1 550	1 500	1 450			630	5000	252
FXN 86 - 25/130	NX	1 600	1 550	1 500	1 450			630	5000	252
FXN 101 - 25/140	NX	2 100	2 050	2 000	1 950			610	5000	244
FXN 101 - 25/150	NX	2 100	2 050	2 000	1 950			610	5000	244
FXN 85 - 40/140	MX	2 500	2 500	2 450	2 450	2 450	2 450	430	6000	172
FXN 85 - 40/150	MX	2 500	2 500	2 450	2 450	2 450	2 450	430	6000	172
FXN 100 - 40/160	MX	3 700	3 600	3 600	3 500	3 500	3 500	400	4500	160
FXN 105 - 50/165	MX	5 200	5 200	5 100	5 000	5 000	5 000	380	4500	152
FXN 120 - 50/198	MX	7 700	7 600	7 500	7 300	7 300	7 300	320	4000	128
FXN 140 - 50/215	MX	10 100	10 000	9 800	9 600	9 500	9 500	320	3000	128
FXN 170 - 63/258	MX	20 500	20 500	20 000	19 500	19 000	19 000	250	2700	100

El par máximo transmisible es el doble del par nominal indicado. Véase la página 14 para la determinación del par de selección. El par nominal teórico sólo se aplica cuando la concentricidad de los aros interior y exterior sea ideal. En la práctica, el juego de los rodamientos y los errores de centrado de las piezas contiguas influyen negativamente en la concentricidad. En tales casos se aplican los pares nominales indicadas en la tabla, considerando la oscilación circular existente.

Solicite más información para revoluciones mayores.

Instrucciones de montaje


Las ruedas libres incorporadas FXN no disponen de soporte propio, por lo que la alineación concéntrica de los aros interior y exterior será por parte del cliente. Deben observarse las oscilaciones circulares admisibles.

El par se transmite en el aro exterior mediante la fijación a presión. Para la transmisión de los pares

indicados en la tabla, el aro exterior debe ubicarse en una carcasa con un diámetro exterior K. La carcasa debe ser de acero o de fundición gris de la calidad mínima GG-20. Para utilizar otros materiales para la carcasa o diámetros exteriores inferiores, rogamos consulte el par correspondiente.

La tolerancia del diámetro del alojamiento de la carcasa se indica en la tabla bajo la dimensión D. La tolerancia del eje debe ser ISO h6 o j6.

para unión por ajuste a presión en el aro exterior con despegue X de los elementos de bloqueo

77-1

			Diámetro d		В	D	F	J	К	L	Peso
Rueda libre	Tipo	Está	ndar	máx.					mín.		
		mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
FXN 31 - 17/60	NX	20*		20*	25	60 P6	55	31	85	24	0,3
FXN 31 - 17/62	NX	20*		20*	25	62 P6	55	31	85	24	0,4
FXN 38 - 17/70	NX	25*		25*	25	70 P6	62	38	90	24	0,4
FXN 46 - 25/80	NX	30		30	35	80 P6	70	46	95	35	0,8
FXN 51 - 25/85	NX	35		36	35	85 P6	75	51	105	35	0,8
FXN 56 - 25/90	NX	35	40	40	35	90 P6	80	56	110	35	0,9
FXN 61 - 19/95	NX	35	40	45*	26	95 P6	85	61	120	25	0,8
FXN 61 - 19/106	NX	35	40	45*	25	106 H7	85	61	120	25	1,2
FXN 66 - 25/100	NX	40	45	48	30	100 P6	90	66	132	35	1,1
FXN 66 - 25/110	NX	40	45	48	40	110 P6	90	66	132	35	1,8
FXN 76 - 25/115	NX	50	55	60*	40	115 P6	100	76	140	35	1,7
FXN 76 - 25/120	NX	50	55	60*	32	120 J6	100	76	140	35	1,8
FXN 86 - 25/125	NX	50	60	70	40	125 P6	110	86	150	40	2,3
FXN 86 - 25/130	NX	50	60	70	40	130 P6	110	86	150	40	2,6
FXN 101 - 25/140	NX	75		80*	45	140 P6	125	101	175	50	3,1
FXN 101 - 25/150	NX	75		80*	45	150 P6	125	101	175	50	3,6
FXN 85 - 40/140	MX	60		65	45	140 P6	125	85	175	60	3,2
FXN 85 - 40/150	MX	60		65	45	150 P6	125	85	175	60	4,2
FXN 100 - 40/160	MX	70		80*	50	160 P6	140	100	190	60	5,1
FXN 105 - 50/165	MX	80		85	62	165 P6	145	105	195	62	5,8
FXN 120 - 50/198	MX	80		95	70	198 H6	160	120	210	70	8,6
FXN 140 - 50/215	MX	90		110	69	215 J6	180	140	245	70	14,0
FXN 170 - 63/258	MX	100		130	80	258 H6	210	170	290	80	21,0

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

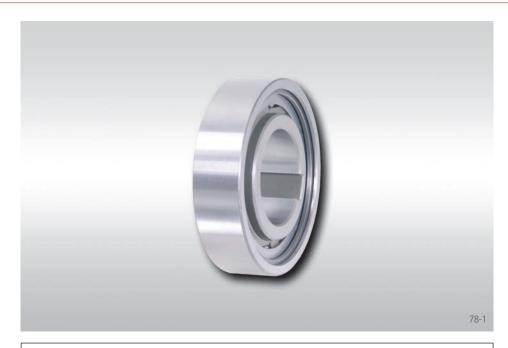
Lubricación

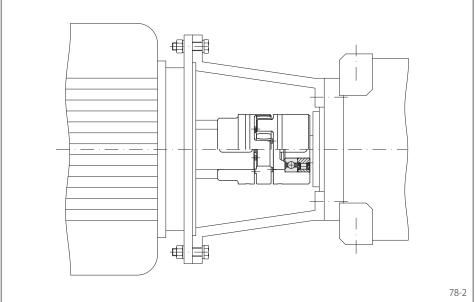
A revoluciones superiores a las de despegue no se necesita lubricación especial y la rueda libre es libre de mantenimiento.

Para el funcionamiento a revoluciones inferiores a las de despegue debe proveerse la lubricación por aceite con la calidad de aceite prescrita.

Ejemplo de pedido

Rueda libre FXN 61-19/95 con despegue X de los elementos de bloqueo con un diámetro de 35 mm:


• FXN 61-19/95 NX, d = 35 mm


Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10. * Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.

Ruedas libres incorporadas FCN ... R

RINGSPANN®

para unión por ajuste a presión en el aro exterior con rodillos de bloqueo

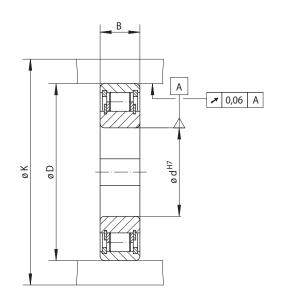
Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

La ruedas libres incorporadas FCN ... R son con rodillos de bloqueo sin soporte propio en las dimensiones de la serie 62 de rodamientos de bolas. El aro exterior se fija a presión en la carcasa puesta a disposición por parte del cliente. Así se consiguen unas soluciones de montaje compactas, aptas para espacios reducidos.

Pares nominales hasta 840 Nm. El par se transmite en el aro exterior mediante la fijación a presión. Diámetros interiores hasta 80 mm.


Ejemplo de aplicación

Rueda libre incorporada FCN 30 R como embrague por adelantamiento en un accionamiento de cepillo de techo de un tren de lavado para coches. La rueda libre esta incorporada en el cubo de un acoplamiento de ejes, que une el motor y el reductor. La rueda libre impide, que en caso de un fallo del control del proceso por parte del accionamiento, el cepillo de techo empuje descontroladamente sobre el techo del vehículo. La subida del cepillo de techo se realiza por la rueda libre que esta trabajando en arrastre. Para la bajada del cepillo de techo se invierte el sentido de giro del motor. El movimiento de bajada del cepillo de techo se efectúa por su propio peso a las revoluciones fijadas por el motor. En caso de sentarse el cepillo de techo, descontroladamente sobre el techo del coche, el accionamiento se desacoplará automáticamente a través de la rueda libre. El cepillo queda asentado por su propio peso sobre el techo, mientras que el accionamiento permite la bajada sin ningún daño, a través de la rueda libre que gira en giro libre.

Ruedas libres incorporadas FCN ... R

RINGSPANN®

para unión por ajuste a presión en el aro exterior con rodillos de bloqueo

79-1

ore de avance gue por adel. Intirretroceso	Estándar Para uso universal	Dimensiones
Rueda lib Embra		

			Revolucio	nes máx.	Diámetro	В	D	K	Peso
Rueda libre	Tipo	Par nominal M _N	Aro interior gira libre/ adelanta	Aro exterior gira libre/ adelanta	d				
		Nm	min ⁻¹	min ⁻¹	mm	mm	mm	mm	kg
FCN 8	R	3,2	4300	6700	8	8	24	28	0,02
FCN 10	R	7,3	3 500	5300	10	9	30	35	0,03
FCN 12	R	11,0	3 200	5 000	12	10	32	37	0,05
FCN 15	R	12,0	2800	4400	15*	11	35	40	0,08
FCN 20	R	40,0	2 200	3300	20*	14	47	54	0,12
FCN 25	R	50,0	1 900	2900	25*	15	52	60	0,15
FCN 30	R	90,0	1 600	2400	30*	16	62	70	0,24
FCN 35	R	135,0	1 350	2100	35*	17	72	80	0,32
FCN 40	R	170,0	1 200	1900	40*	18	80	90	0,40
FCN 45	R	200,0	1 150	1750	45*	19	85	96	0,45
FCN 50	R	220,0	1 050	1650	50*	20	90	100	0,50
FCN 60	R	420,0	850	1350	60*	22	110	122	0,80
FCN 80	R	840,0	690	1070	80*	26	140	155	1,40

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

El par máximo transmisible es el doble del par nominal indicado. Véase la página 14 para la determinación del par de selección. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

Las ruedas libres incorporadas FCN ... R no disponen de soporte propio, por lo que la alineación concéntrica de los aros interior y exterior será por parte del cliente.

El par se transmite en el aro exterior mediante la fijación a presión. Para la transmisión de los pares indicados en la tabla, el aro exterior debe ubicarse en una carcasa con un diámetro exterior K. La carcasa debe ser de acero o de fundición gris de la calidad mínima GG-20. Para utilizar otros materiales para la carcasa o diámetros exteriores inferiores, rogamos consulte el par correspondiente.

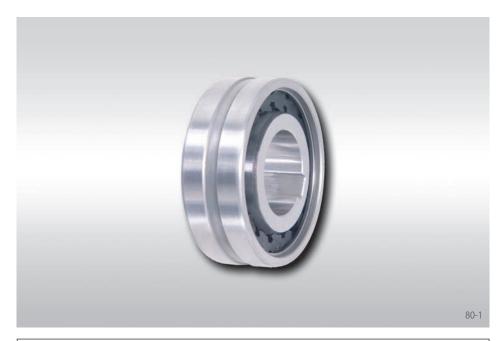
La tolerancia del diámetro del alojamiento D en la carcasa debe ser ISO H7 o J6, la tolerancia del eje debe ser ISO h6 o j6.

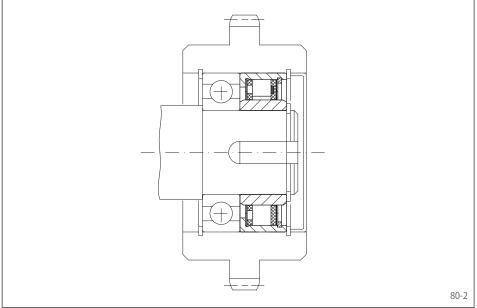
Lubricación

Debe proveerse la lubricación por aceite con la calidad de aceite prescrita.

Ejemplo de pedido

Rueda libre FCN 30 estándar:


FCN 30 R


^{*} Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.

Ruedas libres incorporadas FDN

RINGSPANN®

para unión por ajuste a presión en el aro exterior con elementos de bloqueo

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las ruedas libres incorporadas FDN son ruedas libres con elementos de bloqueo de forma en dimensiones de rodamientos.

El tipo estándar no tiene soporte propio. En el caso del tipo estándar con soporte propio, cada segundo elemento de bloqueo ha sido reemplazado por un rodillo cilíndrico; esta rueda libre puede aceptar fuerzas radiales.

Pares nominales hasta 2 400 Nm. El par se transmite en el aro exterior mediante la fijación a presión. Diámetros interiores hasta 80 mm. Otros diámetros estándar, estarán disponibles a corto plazo.


Ejemplo de aplicación

Rueda libre incorporada FDN 40 CFR estándar con soporte propio, utilizada como embrague por adelantamiento en el muñón del eje del accionamiento principal de una máquina textil. La rueda dentada está unida a un accionamiento auxiliar. En el modo de funcionamiento normal (en vacío) el aro interior adelanta y el aro exterior, con la rueda dentada atornillada, está parado. Para el ajuste, la máquina es accionada por el accionamiento auxiliar a velocidad baja por la rueda dentada y la rueda libre funcionando en arrastre.

Ruedas libres incorporadas FDN

RINGSPANN®

para unión por ajuste a presión en el aro exterior con elementos de bloqueo

81-1

re de avance gue por adel. ntirretroceso	Estándar Para uso universal	Estándar con soporte propio Para uso universal	Dimensiones
Rueda lib Embrae A			

			Revolucio	nes máx.			Revolucio	nes máx.	Capacidac	l de carga	Diám	netro	В	D	K	Peso
		Par	Aro interior	Aro exterior		Par	Aro interior	Aro exterior	del so	porte	C	i				
		nominal	gira libre/	gira libre/		nominal	gira libre/	gira libre/	dinámico	estático						
Rueda libre	Tipo	M _N	adelanta	adelanta	Tipo	M _N	adelanta	adelanta	C	C ₀	Estándar	máx.				
		Nm	min ⁻¹	min ⁻¹		Nm	min ⁻¹	min ⁻¹	N	N	mm	mm	mm	mm	mm	kg
FDN 15	CFH	16	3875	3 9 2 5	CFR	8	3875	3 9 2 5	7800	4200	8	8	20	37	50	0,1
FDN 20	CFH	28	3375	3450	CFR	14	3375	3 4 5 0	8300	4200	12	12	20	42	55	0,1
FDN 25	CFH	48	2900	3 0 5 0	CFR	24	2900	3 0 5 0	10700	5600	15	15	20	47	60	0,1
FDN 30	CFH	75	2525	2675	CFR	36	2525	2675	12900	7000	20*	20*	20	52	65	0,2
FDN 40	CFH	160	1 900	2150	CFR	71	1900	2150	15 000	8400	25	28*	22	62	80	0,2
FDN 50	CFH	260	1475	1775	CFR	120	1475	1775	18400	11300	35	35	22	72	95	0,4
FDN 65	CFH	430	1 200	1550	CFR	200	1200	1550	21 400	14100	50	50*	25	90	120	0,7
FDN 80	CFH	650	950	1350	CFR	300	950	1350	23800	17800	60	60	25	110	140	1,2
FDN 105	CFH	2400	800	1175	CFR	1100	800	1175	48 600	45 000	75	80	35	130	165	3,2

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

El par máximo transmisible es el doble del par nominal indicado. Véase la página 14 para la determinación del par de selección.

Los valores de velocidad máxima indicados, son válidos para condiciones de montaje, de la misma manera que para las ruedas libres completas. En caso de conocer las condiciones de instalación reales, pueden ser admitidas velocidades mayores, según ciertas circunstancias.

Instrucciones de montaje

Las ruedas libres internas FDN en tipo estándar no tienen soporte propio. La alineación concéntrica de los anillos interior y exterior debe ser proporcionada por el cliente. Debe ser observada la oscilación circular existente (TIR).

El par se transmite en el aro exterior mediante la fijación a presión. Para la transmisión de los pares indicados en la tabla, el aro exterior debe ubicarse en una carcasa con un diámetro exterior K. La carcasa debe ser de acero o de fundición gris de la calidad mínima GG-20. Para utilizar otros materiales para la carcasa o diámetros exteriores inferiores, rogamos consulte el par correspondiente.

La tolerancia del diámetro del alojamiento D en la carcasa debe ser ISO P6, la tolerancia del eje debe ser ISO h6 o j6.

La temperatura de servicio admisible de la rueda libre es de -40° C a 80° C.

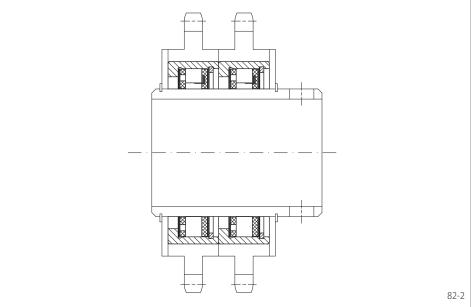
Lubricación

Debe proveerse la lubricación por aceite con la calidad de aceite prescrita.

Ejemplo de pedido

Rueda libre FDN 30 tipo estándar con un diámetro interior de 20 mm:

• FDN 30 CFH, d = 20 mm


Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10. * Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.

Ruedas libres incorporadas FD

RINGSPANN®

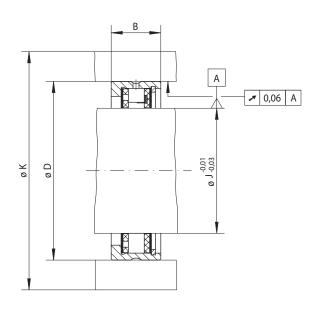
para unión por ajuste a presión en el aro exterior con elementos de bloqueo

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las ruedas libres incorporadas FD son ruedas libres con elementos de bloqueo de forma sin aro interior. Se utiliza como superficie de rodadura el eje endurecido y rectificado del cliente.


El tipo estándar no tiene soporte propio. En el caso del tipo estándar con soporte propio, cada segundo elemento de bloqueo ha sido reemplazado por un rodillo cilíndrico; esta rueda libre puede aceptar fuerzas radiales.

Pares nominales hasta 2400 Nm. El par se transmite en el aro exterior mediante la fijación a presión.

Ejemplo de aplicación

Dos ruedas libres incorporadas FD 40 CFR estándar con soporte propio, utilizadas como ruedas libres de avance en el accionamiento de los rodillos de transporte de una instalación distribuidora de paquetes. En el funcionamiento normal, los rodillos de transporte se accionan a través de las ruedas libres funcionando en arrastre. En la estación de salida los paquetes pueden retirarse fácilmente, dado que la rueda libre adelanta al accionamiento (funcionamiento en vacío).

para unión por ajuste a presión en el aro exterior con elementos de bloqueo

83-1

re de avance gue por adel. ntirretroceso	Estándar Para uso universal	Estándar con soporte propio Para uso universal	Dimensiones
Ruedalib Embrac			

			Revolucio	ones máx.			Revolucio	nes máx.	Capacidad		J	В	D	K	Peso
		Par	Aro interior	Aro exterior		Par	Aro interior	Aro exterior	del so	porte					
		nominal	gira libre/	gira libre/		nominal	gira libre/	gira libre/	dinámico	estático					
Rueda lil	re Tip	o M _N	adelanta	adelanta	Tipo	M _N	adelanta	adelanta	C	C ₀					
		Nm	min ⁻¹	min ⁻¹		Nm	min ⁻¹	min ⁻¹	N	N	mm	mm	mm	mm	kg
FD	2 CF	H 11	4225	4250	CFR	6	4225	4250	7600	4200	12	16	34	45	0,1
FD '	15 CF	H 16	3875	3 9 2 5	CFR	8	3875	3 9 2 5	7800	4200	15	20	37	50	0,1
FD 2	20 CF	H 28	3 3 7 5	3450	CFR	14	3375	3450	8320	4200	20	20	42	55	0,1
FD 2	25 CF	H 48	2900	3 0 5 0	CFR	24	2900	3 0 5 0	10700	5 600	25	20	47	60	0,1
FD :	30 CF	H 75	2 5 2 5	2675	CFR	36	2525	2675	12900	7000	30	20	52	65	0,1
FD 4	10 CF	H 160	1 900	2150	CFR	71	1900	2150	15 000	8400	40	22	62	80	0,1
FD !	50 CF	H 260	1 475	1775	CFR	120	1475	1775	18400	11300	50	22	72	95	0,2
FD 6	55 CF	H 430	1 200	1550	CFR	200	1200	1550	21 400	14100	65	25	90	120	0,3
FD 8	30 CF	H 650	950	1350	CFR	300	950	1350	23 800	17800	80	25	110	140	0,6
FD 10)5 CF	H 2400	800	1 175	CFR	1 100	800	1175	48 600	45 000	105	35	130	165	0,7

Las ruedas libres FD están disponibles con plazos de entrega cortos.

El par máximo transmisible es el doble del par nominal indicado. Véase la página 14 para la determinación del par de selección.

Los valores de velocidad máxima indicados, son válidos para condiciones de montaje, de la misma manera que para las ruedas libres completas. En caso de conocer las condiciones de instalación reales, pueden ser admitidas velocidades mayores, según ciertas circunstancias.

Instrucciones de montaje

Las ruedas libres internas FDN en tipo estándar no tienen soporte propio. La alineación concéntrica de los anillos interior y exterior debe ser proporcionada por el cliente. Debe ser observada la oscilación circular existente (TIR).

El par se transmite en el aro exterior mediante la fijación a presión. Para la transmisión de los pares indicados en la tabla, el aro exterior debe ubicarse en una carcasa con un diámetro exterior K. La carcasa debe ser de acero o de fundición gris de la calidad mínima GG-20. Para utilizar otros materiales para la carcasa o diámetros exteriores inferiores, rogamos consulte el par correspondiente.

La tolerancia del diámetro del alojamiento D en la carcasa debe ser ISO P6.

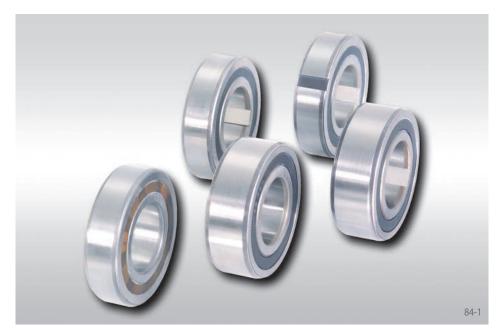
Por favor, tengan en cuenta las anotaciones técnicas en la página 108.

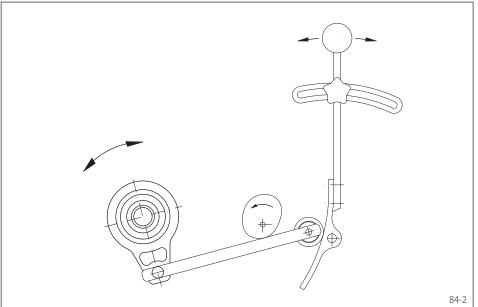
La temperatura de servicio admisible de la rueda libre es de -40° C a 80° C.

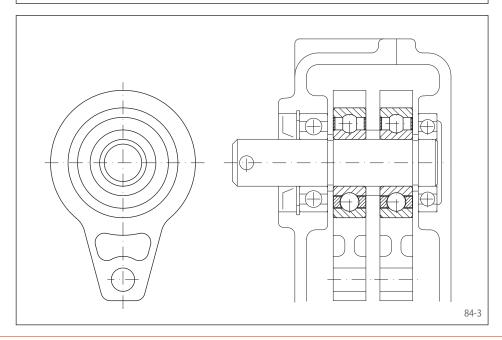
Lubricación

Debe proveerse la lubricación por aceite con la calidad de aceite prescrita.

Ejemplo de pedido


Rueda libre FD 12 tipo estándar:


FD 12 CFH


Ruedas libres incorporadas ZZ ...

con propiedades de rodamiento

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las ruedas libres incorporadas ZZ ... son ruedas libres con soporte propio y elementos de bloqueo de forma con propiedades de rodamiento. Para las condiciones normales de funcionamiento, las ruedas libres se suministran provistas de grasa y libres de mantenimiento. La rueda libre se monta en la carcasa puesta a disposición por parte del cliente. Así se consiguen unas soluciones de montaje compactas, aptas para espacios reducidos.

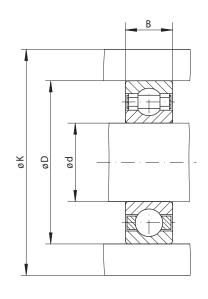
Pares nominales hasta 325 Nm. El par se transmite en el aro interior y/o exterior mediante la fijación a presión o una chaveta.

Diámetros interiores hasta 40 mm. Se dispone de las siguientes series:

Serie	Tr	ransmisión	del par en	el	Obtur-	Página
	aro ex	cterior	aro in	iterior	ación 2RS	
	med		med	iante		
		fijación a		fijación a		
	chaveta	presión	chaveta	presión		
ZZ		0		0		85
ZZ 2RS		0		0	0	86
ZZ P2RS		•	•		•	87
ZZ P		0	0			88
ZZ PP	0		0			89

Las ruedas libres ZZ 6201 hasta ZZ 6207 tienen las mismas dimensiones que los rodamientos correspondientes de la serie 62.

Las series ZZ ... 2RS y ZZ ... P2RS disponen de obturación 2RS.


Ejemplo de aplicación

Dos ruedas libres incorporadas ZZ 6202, utilizadas como ruedas libres de avance en el accionamiento del rodillo dosificador de una sembradora. Las ruedas libres están incorporadas en un engranaje en baño de aceite con regulación continua. En el eje de entrada están ubicados dos discos de levas desfasadas en 180°. A través de unas palancas, éstas accionan las ruedas libres incorporadas, ubicadas una al lado de la otra, que giran el eje dosificador paso a paso. El ajuste continuo de las revoluciones del eje de salida del reductor se realiza virando las chapas de soporte de los rodillos, efectuando las palancas recorridos diferentes.

Ruedas libres incorporadas ZZ

RINGSPANN®

para unión por ajuste a presión en el aro exterior con elementos de bloqueo y soporte propio

85-1

re de avance gue por adel. ntirretroceso	Estándar Para uso universal	Dimensiones
Rueda lib Embrac		

	Par		Capacidad del so		Diámetro	В	D	K	Peso
Rueda libre	nominal M _N Nm	Revoluciones máx. min ⁻¹	dinámico C N	estático C ₀ N	mm	mm	mm	mm	kg
ZZ 8	2,5	15 000	3 2 0 0	860	8	9	22	27	0,02
ZZ 6201	9,3	10000	6100	2700	12	10	32	39	0,04
ZZ 6202	26,0	9400	6000	3700	15	11	35	42	0,06
ZZ 6203	34,0	8200	7350	4550	17	12	40	51	0,08
ZZ 6204	65,0	6800	10000	6300	20	14	47	58	0,12
ZZ 6205	80,0	5600	11 000	7000	25	15	52	63	0,15
ZZ 6206	170,0	4000	15 000	10000	30	16	62	73	0,25
ZZ 6207	175,0	3600	12500	7200	35	17	72	85	0,30
ZZ 40	325,0	3000	15 500	12250	40	22	80	94	0,50

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

Instrucciones de montaje

El par se transmite en los aros exterior e interior mediante la fijación a presión. Para la transmisión de los pares indicados en la tabla, el aro exterior debe ubicarse en una carcasa con un diámetro exterior K. La carcasa debe ser de acero o de fundición gris de la calidad mínima GG-20. Para utilizar otros materiales para la carcasa o diámetros exteriores inferiores, rogamos consulte el par correspondiente.

La tolerancia del diámetro del alojamiento D en la carcasa debe ser ISO N6, la tolerancia del eje debe ser ISO n6.

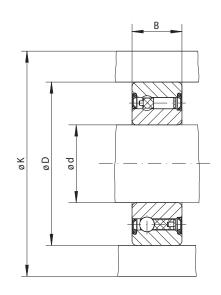
La temperatura de servicio admisible de la rueda libre es de -40° C a 80° C.

Lubricación

Para las condiciones normales de funcionamiento las ruedas libres se suministran provistas de grasa. Sin embargo, también pueden conectarse a la lubricación de aceite existente del cliente, lo cual es especialmente recomendable para revoluciones elevadas.

Ejemplo de pedido

Rueda libre ZZ 6202 tipo estándar:


• ZZ 6202

El par máximo transmisible es el doble del par nominal indicado. Véase la página 14 para la determinación del par de selección.

Ruedas libres incorporadas ZZ ... 2RS

para unión por ajuste a presión en el aro exterior con elementos de bloqueo, soporte propio y obturación

86-1

ore de avance gue por adel. Intirretroceso	Estándar Para uso universal	Dimensiones
Rueda librace Embrace An		

			Capacidao	l de carga	Diámetro	В	D	K	Peso
			delso	porte	d				
	Par	Revoluciones	dinámico	estático					
Rueda libre	nominal	máx.	C	C ₀					
	Nm	min ⁻¹	N	N	mm	mm	mm	mm	kg
ZZ 8 2RS*	2,5	15 000	3300	860	8	9	22	27	0,02
ZZ 12 2RS	9,3	10000	6100	2800	12	14	32	39	0,05
ZZ 15 2RS	17,0	8400	7400	3 400	15	16	35	42	0,07
ZZ 17 2RS	30,0	7350	7900	3 800	17	17	40	51	0,09
ZZ 20 2RS	50,0	6000	9400	4500	20	19	47	58	0,15
ZZ 25 2RS	85,0	5 2 0 0	10700	5 500	25	20	52	63	0,18
ZZ 30 2RS	138,0	4200	11700	6500	30	21	62	73	0,27
ZZ 35 2RS	175,0	3600	12600	7300	35	22	72	85	0,40
ZZ 40 2RS	325,0	3000	15 500	12300	40	27	80	94	0,60

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

Instrucciones de montaje

El par se transmite en los aros exterior e interior mediante la fijación a presión. Para la transmisión de los pares indicados en la tabla, el aro exterior debe ubicarse en una carcasa con un diámetro exterior K. La carcasa debe ser de acero o de fundición gris de la calidad mínima GG-20. Para utilizar otros materiales para la carcasa o diámetros exteriores inferiores, rogamos consulte el par correspondiente.

La tolerancia del diámetro del alojamiento D en la carcasa debe ser ISO N6, la tolerancia del eje debe ser ISO n6.

Las temperaturas admisibles de funcionamiento de la rueda libre es de +5° C a +60° C. Póngase en contacto con nosotros si la temperatura es diferente a los valores indicados.

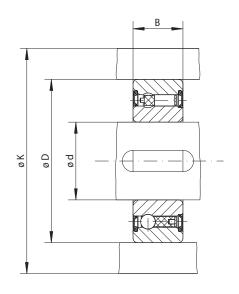
Lubricación

Las ruedas libres se suministran provistas de grasa y con obturación 2RS.

Ejemplo de pedido

Rueda libre ZZ 17 2RS tipo estándar:

• ZZ 17 2RS


El par máximo transmisible es el doble del par nominal indicado. Véase la página 14 para la determinación del par de selección.

^{*} Sólamente una obturación RS en el lateral del rodamiento. Mirando desde este lado, el aro interior gira libre en el sentido de las agujas del reloj.

Ruedas libres incorporadas ZZ ... P2RS

para unión por ajuste a presión en el aro exterior con elementos de bloqueo, soporte propio y obturación

87-1

re de avance gue por adel. ntirretroceso	Estándar Para uso universal	Dimensiones
Rueda lib Embrae A		

			Capacidad de carga		Diámetro	В	D	K	Peso
	Par		delso	porte	d				
	nominal	Revoluciones	dinámico	estático					
Rueda libre	M _N	máx.	С	C ₀					
	Nm	min ⁻¹	N	N	mm	mm	mm	mm	kg
ZZ 12 P2RS	9,3	10000	6100	2800	12	14	32	39	0,05
ZZ 15 P2RS	17,0	8400	7400	3 400	15	16	35	42	0,07
ZZ 17 P2RS	30,0	7400	7900	3 800	17	17	40	51	0,09
ZZ 20 P2RS	50,0	6000	9400	4500	20	19	47	58	0,15
ZZ 25 P2RS	85,0	5 200	10700	5 500	25	20	52	63	0,18
ZZ 30 P2RS	138,0	4200	11700	6500	30	21	62	73	0,30
ZZ 35 P2RS	175,0	3600	12600	7300	35	22	72	85	0,40
ZZ 40 P2RS	325,0	3000	15 500	12300	40	27	80	94	0,60

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

El par máximo transmisible es el doble del par nominal indicado. Véase la página 14 para la determinación del par de selección.

Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

El par se transmite en el aro interior mediante una chaveta y en el exterior mediante la fijación a presión. Para la transmisión de los pares indicados en la tabla, el aro exterior debe ubicarse en una carcasa con un diámetro exterior K. La carcasa debe ser de acero o de fundición gris de la calidad mínima GG-20. Para utilizar otros materiales para la carcasa o diámetros exteriores inferiores, rogamos consulte el par correspondiente.

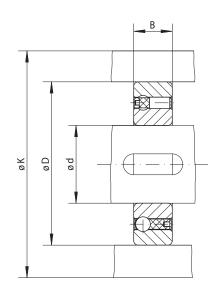
La tolerancia del diámetro del alojamiento D en la carcasa debe ser ISO N6, la tolerancia del eje debe ser ISO k6.

Las temperaturas admisibles de funcionamiento de la rueda libre es de +5° C a +60° C. Póngase en contacto con nosotros si la temperatura es diferente a los valores indicados.

Lubricación

Las ruedas libres se suministran provistas de grasa y con obturación 2RS.

Ejemplo de pedido


Rueda libre ZZ 25 P2RS tipo estándar:

ZZ 25 P2RS

Ruedas libres incorporadas ZZ ... P

para unión por ajuste a presión en el aro exterior con elementos de bloqueo y soporte propio

88-1

re de avance gue por adel. ntirretroceso	Estándar Para uso universal	Dimensiones
Rueda lib Embra		

				Capacidad de carga del soporte		В	D	К	Peso
Rueda libre	Par nominal Nm	Revoluciones máx. min ⁻¹	dinámico C N	estático C ₀ N	mm	mm	mm	mm	kg
ZZ 6201 P	9,3	10000	6100	2800	12*	10	32	39	0,04
ZZ 6202 P	17	8400	7400	3 400	15*	11	35	42	0,06
ZZ 6203 P	30	7350	7900	3 800	17*	12	40	51	0,07
ZZ 6204 P	50	6000	9400	4500	20*	14	47	58	0,11
ZZ 6205 P	85	5 2 0 0	10700	5 500	25*	15	52	63	0,14
ZZ 6206 P	138	4200	11700	6500	30*	16	62	73	0,21
ZZ 6207 P	175	3600	12600	7300	35*	17	72	85	0,30
ZZ 40 P	325	3000	15 500	12300	40	22	80	94	0,50

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

El par máximo transmisible es el doble del par nominal indicado. Véase la página 14 para la determinación del par de selección. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

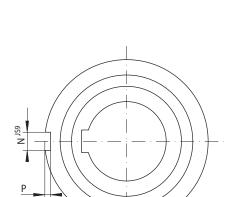
El par se transmite en el aro interior mediante una chaveta y en el exterior mediante la fijación a presión. Para la transmisión de los pares indicados en la tabla, el aro exterior debe ubicarse en una carcasa con un diámetro exterior K. La carcasa debe ser de acero o de fundición gris de la calidad mínima GG-20. Para utilizar otros materiales para la carcasa o diámetros exteriores inferiores, rogamos consulte el par correspondiente.

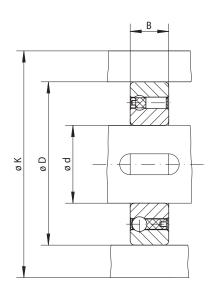
La tolerancia del diámetro del alojamiento D en la carcasa debe ser ISO N6, la tolerancia del eje debe ser ISO k6.

Las temperaturas admisibles de funcionamiento de la rueda libre es de +5° C a +60° C. Póngase en contacto con nosotros si la temperatura es diferente a los valores indicados.

Lubricación

 $Las\ ruedas\ libres\ se\ suministran\ provistas\ de\ grasa.$


Ejemplo de pedido


Rueda libre ZZ 6203 P tipo estándar:

• ZZ 6203 P

^{*} Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.

para unión de chaveta en el aro exterior con elementos de bloqueo y soporte propio

89-1

ore de avance gue por adel. Intirretroceso	Estándar Para uso universal	Dimensiones
Rueda lib Embrai		

	Par			Capacidad de carga del soporte		В	D	K	N	Р	Peso
Rueda libre	nominal M _N Nm	Revoluciones máx. min ⁻¹	dinámico C N	estático C ₀ N	mm	mm	mm	mm	mm	mm	kg
ZZ 6202 PP	17	8400	7400	3 4 0 0	15*	11	35	42	2	0,6	0,06
ZZ 6203 PP	30	7350	7900	3800	17*	12	40	51	2	1,0	0,07
ZZ 6204 PP	50	6000	9400	4500	20*	14	47	58	3	1,5	0,11
ZZ 6205 PP	85	5 2 0 0	10700	5 5 0 0	25*	15	52	63	6	2,0	0,14
ZZ 6206 PP	138	4200	11700	6500	30*	16	62	73	6	2,0	0,21
ZZ 6207 PP	175	3600	12600	7300	35*	17	72	85	8	2,5	0,30
ZZ 40 PP	325	3 0 0 0	15 500	12300	40	22	80	94	10	3,0	0,50

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

El par máximo transmisible es el doble del par nominal indicado. Véase la página 14 para la determinación del par de selección.

Instrucciones de montaje

El par se transmite en los aros exterior e interior mediante una chaveta. Para la transmisión de los pares indicados en la tabla, el aro exterior debe ubicarse en una carcasa con un diámetro exterior K. La carcasa debe ser de acero o de fundición gris de la calidad mínima GG-20. Para utilizar otros materiales para la carcasa o diámetros exteriores inferiores, rogamos consulte el par correspondiente. La tolerancia del diámetro del alojamiento D en la carcasa debe ser ISO H6, la tolerancia del eje debe ser ISO h6.

Las temperaturas admisibles de funcionamiento de la rueda libre es de +5° C a +60° C. Póngase en contacto con nosotros si la temperatura es diferente a los valores indicados.

Lubricación

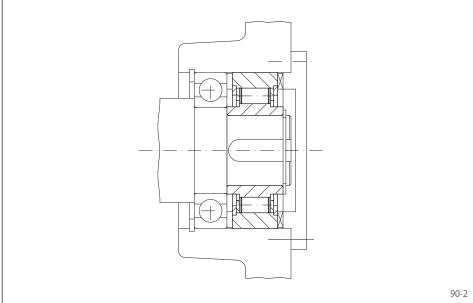
Las ruedas libres se suministran provistas de grasa.

Ejemplo de pedido

Rueda libre ZZ 6205 PP tipo estándar:

ZZ 6205 PP

Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.


^{*} Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.

Ruedas libres incorporadas FSN

RINGSPANN®

para unión de chaveta en el aro exterior con rodillos de bloqueo

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

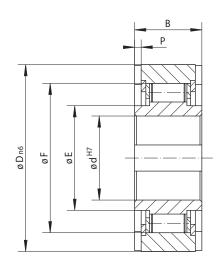
Las ruedas libres FSN son ruedas libres con rodillos de bloqueo sin soporte propio.

La rueda libre se monta en la carcasa puesta a disposición por parte del cliente. Así se consiguen unas soluciones de montaje compactas, aptas para espacios reducidos.

Pares nominales hasta 3 000 Nm. Para la transmisión del par, el aro exterior dispone de ranuras frontales en ambos lados.

Diámetros interiores hasta 80 mm.

Ejemplo de aplicación


Rueda libre incorporada FSN 50, utilizada como antirretroceso y montada en el muñón del eje intermedio de un engranaje recto en el accionamiento de un elevador. Con el motor parado, el elevador debe retenerse con total seguridad para impedir que la cinta transportadora retroceda debido al material transportado.

Ruedas libres incorporadas FSN

RINGSPANN®

para unión de chaveta en el aro exterior con rodillos de bloqueo

91-1 91-2

ore de avance gue por adel. Intirretroceso	Estándar Para uso universal	Dimensiones
Rueda lib Embra		

		Revolucio	nes máx.	Diámetro	В	D	E	F	N	Р	Peso
	Par	Aro interior	Aro exterior	d							
D de l'ile se	nominal	gira libre/	gira libre/ adelanta								
Rueda libre	M _N Nm	adelanta min ⁻¹	min ⁻¹	mm	mm	mm	mm	mm	mm	mm	ka
											kg
FSN 8	11	3 0 5 0	4700	8	13	35	18,5	28	4	1,3	0,1
FSN 12	11	3 0 5 0	4700	12	13	35	18,5	28	4	1,3	0,1
FSN 15	36	2350	3700	15*	18	42	21,0	36	5	1,7	0,1
FSN 17	56	2100	3300	17*	19	47	24,0	40	5	2,0	0,2
FSN 20	90	1750	3 200	20*	21	52	29,0	45	6	1,5	0,2
FSN 25	125	1650	3100	25*	24	62	35,0	52	8	2,0	0,4
FSN 30	210	1400	2200	30*	27	72	40,0	60	10	2,5	0,6
FSN 35	306	1250	2150	35*	31	80	47,0	68	12	3,5	0,8
FSN 40	430	1100	2050	40*	33	90	55,0	78	12	3,5	0,9
FSN 45	680	1 000	1900	45*	36	100	56,0	85	14	3,5	1,3
FSN 50	910	900	1750	50*	40	110	60,0	92	14	4,5	1,7
FSN 60	1 200	750	1450	60*	46	130	75,0	110	18	5,5	2,8
FSN 70	2000	600	1 000	70*	51	150	85,0	125	20	6,5	4,2
FSN 80	3000	500	900	80*	58	170	95,0	140	20	7,5	6,0

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo.

El par máximo transmisible es el doble del par nominal indicado. Véase la página 14 para la determinación del par de selección. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

Las ruedas libres incorporadas FSN no disponen de soporte propio, por lo que la alineación concéntrica de los aros interior y exterior será por parte del cliente.

La tolerancia del diámetro del alojamiento D en la carcasa debe ser ISO H7 o G7, la tolerancia del eje debe ser ISO h6 o j6.

El aro exterior debe estar completamente introducido en un alojamiento estable para transmitir el par de catálogo.

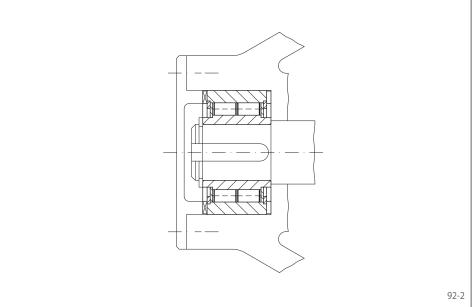
Lubricación

Debe proveerse la lubricación por aceite con la calidad de aceite prescrita.

Ejemplo de pedido

Rueda libre FSN 12 tipo estándar:

FSN 12


^{*} Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.

Ruedas libres incorporadas FN

RINGSPANN®

para unión de chaveta en el aro exterior con rodillos de bloqueo

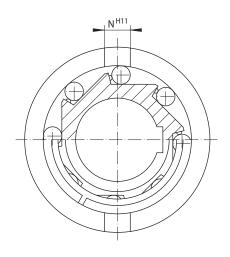
Aplicación como

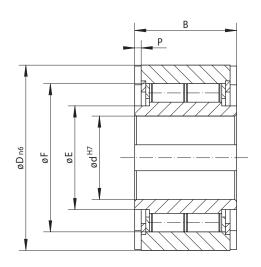
- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las ruedas libres FN son ruedas libres con rodillos de bloqueo sin soporte propio.

La rueda libre se monta en la carcasa puesta a disposición por parte del cliente. Así se consiguen unas soluciones de montaje compactas, aptas para espacios reducidos.


Pares nominales hasta 3 000 Nm. Para la transmisión del par, el aro exterior dispone de ranuras frontales en ambos lados.


Diámetros interiores hasta 60 mm.

Ejemplo de aplicación

Rueda libre incorporada FN 20, utilizada como antirretroceso sobre el eje motriz de unos mecanismos de arrastre en un transportador circular. En el funcionamiento normal, el eje motriz acciona y la rueda libre funciona en vacío. En caso de fallo, la rueda libre utilizada como antirretroceso evita el retroceso incontrolado de los mecanismos de arrastre.

para unión de chaveta en el aro exterior con rodillos de bloqueo

93-1 93-2

ore de avance gue por adel. Intirretroceso	Estándar Para uso universal	Dimensiones
Rueda lib Embrac		

			Revolucio	ines max.	Diámetro	В	D	E	F	N	P	Peso
		Par	Aro interior	Aro exterior	d							
Rue	da libre	nominal M _N	gira libre/ adelanta	gira libre/ adelanta								
		Nm	min ⁻¹	min ⁻¹	mm	mm	mm	mm	mm	mm	mm	kg
FI	1 8	18	2800	5400	8	20	37	19	30	6	3,0	0,1
FI	l 12	18	2800	5400	12	20	37	19	30	6	3,0	0,1
FI	l 15	50	2500	5 100	15	30	47	23	37	7	3,5	0,3
FI	l 20	112	1900	4 350	20	36	62	35	50	8	3,5	0,6
FI	l 25	220	1 5 5 0	3350	25	40	80	40	68	9	4,0	1,1
FI	1 30	410	1400	3 0 5 0	30	48	90	45	75	12	5,0	1,6
FI	l 35	500	1 300	2850	35	53	100	50	80	13	6,0	2,3
FI	l 40	750	1150	2500	40	63	110	55	90	15	7,0	3,1
FI	l 45	1020	1100	2400	45	63	120	60	95	16	7,0	3,7
FI	l 50	1900	950	2050	50	80	130	70	110	17	8,5	5,3
FI	l 55	2000	900	1900	55	80	140	75	115	18	9,0	6,0
FI	l 60	3 000	800	1800	60	95	150	80	125	18	9,0	8,4

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo. El par máximo transmisible es el doble del par nominal indicado. Véase la página 14 para la determinación del par de selección. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

Las ruedas libres incorporadas FN no disponen de soporte propio, por lo que la alineación concéntrica de los aros interior y exterior será por parte del cliente.

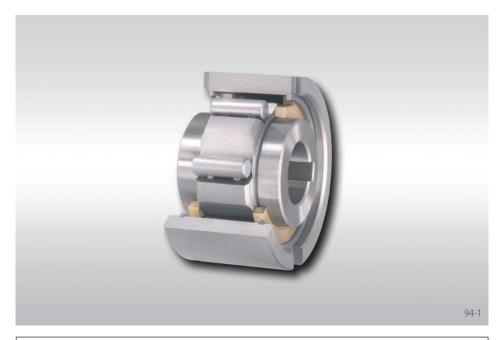
La tolerancia del diámetro del alojamiento D en la carcasa debe ser ISO H7 o G7, la tolerancia del eje debe ser ISO h6 o j6.

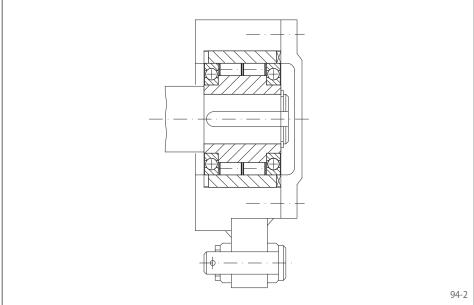
El aro exterior debe estar completamente introducido en un alojamiento estable para transmitir el par de catálogo.

Lubricación

Debe proveerse la lubricación por aceite con la calidad de aceite prescrita.

Ejemplo de pedido


Rueda libre FN 45 tipo estándar:


• FN 45

Ruedas libres incorporadas FNR

RINGSPANN®

para unión de chaveta por el aro exterior con rodillos de bloqueo y rodamiento

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

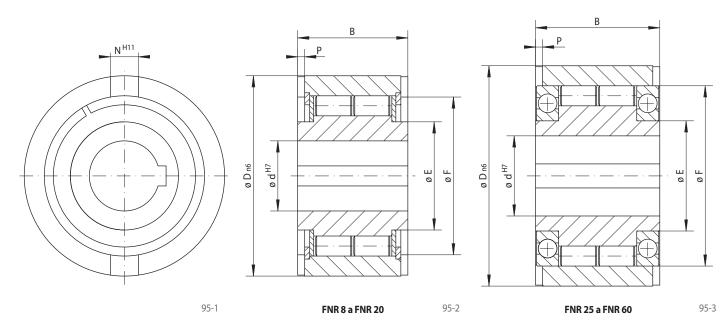
Características

Las ruedas libres incorporadas FNR son ruedas libres con rodillos de bloqueo y rodamientos. Las ruedas libres del tamaño 8 a 20 disponen de cojinetes de deslizamiento, los tamaños 25 a 60 de rodamientos de bolas, que permiten mayores revoluciones en vacío.

La rueda libre se monta en la carcasa puesta a disposición por parte del cliente. Así se consiguen unas soluciones de montaje compactas, aptas para espacios reducidos.

Pares nominales hasta 3 000 Nm. Para la transmisión del par, el aro exterior dispone de ranuras frontales en ambos lados.

Diámetros interiores hasta 60 mm.


Ejemplo de aplicación

La rueda libre incorporada FNR40 utilizada como rueda libre de avance para el accionamiento paso a paso en el dispositivo de entrada de una máquina para elaborar alambre. Un mecanismo de manivela acciona la palanca de avance. Mediante la rueda libre de avance, el movimiento de vaivén se transforma en un movimiento giratorio paso a paso del eje de arrastre del alambre.

Ruedas libres incorporadas FNR

RINGSPANN®

para unión de chaveta por el aro exterior con rodillos de bloqueo y rodamiento

ore de avance gue por adel. Intirretroceso	Estándar Para uso universal	Dimensiones
Rueda lib Embrac		

Rueda libre	Par nominal M _N Nm	Revolucion Aro interior gira libre/ adelanta min ⁻¹	nes máx. Aro exterior gira libre/ adelanta min ⁻¹	Diámetro d mm	B	D	E	F mm	N mm	P mm	Peso kg
FNR 8	18	1 200	1 200	8	20	37	19	30	6	3,0	0,1
FNR 12	18	1 200	1 200	12	20	37	19	30	6	3,0	0,1
FNR 15	50	950	950	15	30	47	23	37	7	3,5	0,3
FNR 20	112	650	650	20	36	62	35	50	8	3,5	0,6
FNR 25	220	1550	3 3 5 0	25	40	80	40	68	9	4,0	1,3
FNR 30	410	1400	3050	30	48	90	45	75	12	5,0	1,9
FNR 35	500	1300	2850	35	53	100	50	80	13	6,0	2,6
FNR 40	750	1150	2500	40	63	110	55	90	15	7,0	3,6
FNR 45	1020	1100	2400	45	63	120	60	95	16	7,0	4,2
FNR 50	1900	950	2050	50	80	130	70	110	17	8,5	6,0
FNR 55	2000	900	1 900	55	80	140	75	115	18	9,0	6,8
FNR 60	3 0 0 0	800	1800	60	95	150	80	125	18	9,0	9,5

Los diámetros marcados en azul de las ruedas libres de la tabla, estarán disponibles a corto plazo. El par máximo transmisible es el doble del par nominal indicado. Véase la página 14 para la determinación del par de selección. Ranura de chaveta según DIN 6885, hoja 1 • Tolerancia del ancho de la ranura JS10.

Instrucciones de montaje

La tolerancia del diámetro del alojamiento D en la carcasa será ISO H7 o G7, la tolerancia del eje será ISO h6 o j6.

El aro exterior debe estar completamente introducido en un alojamiento estable para transmitir el par de catálogo.

Lubricación

Debe proveerse la lubricación por aceite con la calidad de aceite prescrita.

Ejemplo de pedido

Rueda libre FNR 20 estándar:

FNR 20

Jaulas de rueda libre SF

RINGSPANN®

para completar con aro exterior e interior con elementos de bloqueo, existente en tres tipos

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las jaulas de rueda libre SF son ruedas libres con elementos de bloqueo para ser instaladas entre el aro exterior y el aro interior, provistos por el cliente.

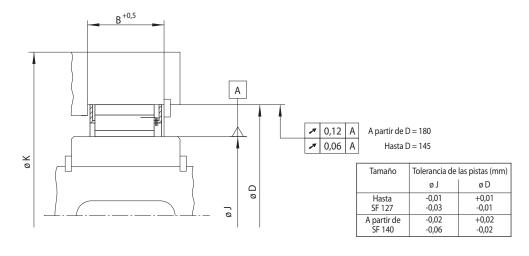
Aparte del tipo estándar, se dispone de dos tipos más para alargar la vida de servicio.

Par nominal hasta 93 000 Nm.

Instrucciones de montaje

El guiado lateral de la jaula puede realizarse bien por un resalte en el aro exterior, con anillos seeger fijados en las ranuras del aro exterior, o con arandelas distanciadoras.

La transmision de par puede ser aumentado si se unen lateralmente varias jaulas. En estos casos, por favor, consultar con RINGSPANN los pares transmisibles.


Por favor, tengan en cuenta las anotaciones técnicas en la página 108 respecto a las pistas de rodadura.

Ejemplo de pedido

Jaula de rueda libre tamaño SF 44-14,5 tipo estándar:

• SF 44-14,5 K

para completar con aro exterior e interior con elementos de bloqueo, existente en tres tipos

97-2

ue por adel. tirretroceso	Estándar Para uso univer- sal	RIDUVIT® Para elevada duración de vida mediante recubrimiento de los elementos de bloqueo	Con despegue Z Para elevada duración de vida mediante despegue de los elementos de bloqueo al girar el aro exterior a velocidad alta	Dimensiones
Embragu				

F	ueda libre	Tipo	Par nominal M _N Nm	Tipo	Par nominal M _N Nm	Tipo	Par nominal M _N Nm	Velocidad de despegue aro exterior min-1	Revoluciones máx. Aro interior arrastra min ⁻¹	mm	D	B	K mm	Elementos de bloqueo Cantidad	Peso kg
SF	18-13,5	J	66		.,,,,					18,80	35,47	13,5	50	10	0,04
SF	23-13,5	J	120							23,63	40,29	13,5	55	12	0,04
SF	27-13,5	J	160	JT	160	JZ	100	3600	1 440	27,78	44,42	13,5	65	14	0,05
SF	31-13,5	J	170	JT	170	JZ	110	3400	1360	31,75	48,41	13,5	70	12	0,04
SF	32-21,5	J	400							32,77	49,44	21,5	65	14	0,07
SF	37-14,5	K	270	KT	270	KZ	210	2900	1160	37	55	14,5	75	14	0,06
SF	42-21	J	720							42,10	58,76	21	85	18	0,09
SF	44-14,5	K	500	KT	500	KZ	400	2250	900	44	62	14,5	90	20	0,08
SF	46-21	J	840							46,77	63,43	21	90	20	0,10
SF	50-18,5	K	680	KT	680	KZ	580	2250	900	50	68	18,5	90	20	0,10
SF	56-21	J	1 050							56,12	72,78	21	100	22	0,11
SF	57-18,5	K	950	KT	950	KZ	800	2000	800	57	75	18,5	105	24	0,13
SF	61-21	J	1300	JT	1300	JZ	1150	1550	620	61,91	78,57	21	110	26	0,14
SF	72-23,5	K	2100	KT	2100	KZ	1850	1550	620	72	90	23,5	135	32	0,23
SF	82-25	K	2300	KT	2300	KZ	2100	1450	580	82	100	25	140	36	0,26
SF	107-25	K	3300	KT	3 3 0 0	KZ	3100	1300	520	107	125	25	170	48	0,35
SF	127-25	K	4900	KT	4 900	KZ	4600	1 200	480	127	145	25	210	56	0,40
SF	140-50	S	13600	ST	13600	SZ	10500	950	380	140	180	50	260	24	1,70
SF	140-63	S	18000	ST	18000	SZ	14000	800	320	140	180	63	260	24	2,00
SF	170-50	S	17000	ST	17000	SZ	13500	880	352	170	210	50	290	28	1,95
SF	170-63	S	23 000	ST	23 000	SZ	18500	720	288	170	210	63	290	28	2,40
SF	200-50	S	23 000	ST	23 000	SZ	18500	820	328	200	240	50	325	36	2,50
SF	200-63	S	29000	ST	29 000	SZ	23 500	680	272	200	240	63	325	36	3,10
SF	230-63	S	37000	ST	37 000	SZ	29500	650	260	230	270	63	360	45	3,90
SF	270-50	S	35 000	ST	35 000	SZ	29500	720	288	270	310	50	410	48	3,40
SF	270-63	S	44 000	ST	44 000	SZ	37000	600	240	270	310	63	410	48	4,20
SF	340-50	S	45 000	ST	45 000	SZ	43 000	640	256	340	380	50	510	60	4,20
SF	340-63	S	67 500	ST	67 500	SZ	57500	540	216	340	380	63	510	60	5,20
SF	380-50	S	57000	ST	57000	SZ	48500	610	244	380	420	50	550	63	4,40
SF	440-63	S	93 000	ST	93 000	SZ	80 000	470	188	440	480	63	640	72	6,20

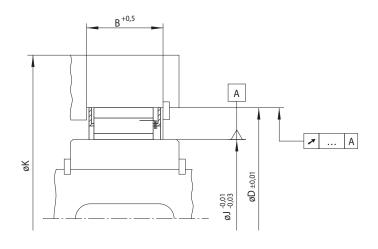
Las Jaulas de rueda libre SF están disponibles con plazos de entrega cortos. El par nominal teórico, tiene solamente validez exisitiendo concentricidad perfecta entre el aro interior y exterior.

El par máximo transmisible es de 2 veces el par nominal especificado. Vea la página 14 para la determinación del par de selección.

Jaulas de rueda libre SF ... P

para completar con aro exterior e interior para gran oscilación circular, con elementos de bloqueo

Aplicación como


- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las jaulas de rueda libre SF ... P son ruedas libres con elementos de bloqueo para ser instaladas entre el aro exterior y el aro interior, provistos por el cliente.

Par nominal hasta 5800 Nm.

para completar con aro exterior e interior para gran oscilación circular, con elementos de bloqueo.

99-2

re de avance gue por adel. ntirretroceso	Para gran oscilación circular. Para uso universal	Dimensiones
Rueda lib Embraç		

		_	Par nominal teórico	Par nominal, consi	derando la oscilación circul	ar existente (T.I.R.)	J	D	В	К	Elementos de bloqueo	Peso
	Rueda libre	Tipo	✓ 0,0 A Nm	✓ 0,05 A Nm	✓ 0,1 A Nm	✓ 0,15 A	mm	mm	mm	mm	Cantidad	kg
SF	37-14,5	Р	230	210	200	200	37,00	55,00	14,5	75	14	0,06
SF		Р	420	390	360	350	44,00		14,5	90	20	0,08
SF	57-18,5	Р	1 200	960	750	600	57,00	75,00	18,5	100	24	0,13
SF	72-23,5	Р	2700	2200	1700	1400	72,00	90,00	23,5	130	32	0,23
SF	82-25	Р	2800	2400	1 900	1 500	82,00	100,00	25,0	135	36	0,26
SF	107-25	Р	4100	3300	2700	2100	107,00	125,00	25,0	165	48	0,35
SF	127-25	Р	5 800	4800	3900	3 100	127,00	145,00	25,0	200	56	0,40

Las Jaulas de rueda libre SF ... P están disponibles con plazos de entrega cortos.

El par máximo transmisible es de 2 veces el par nominal especificado. Vea la página 14 para la determinación del par de selección.

El par nominal teórico, tiene solamente validez exisitiendo concentricidad perfecta entre el aro interior y exterior. En la práctica, la concentricidad se ve afectada por las tolerancias de los apoyos y los errores de centrado de las piezas cercanas. Entonces, los pares nominales indicados en la tabla se aplican teniendo en cuenta las existentes oscilaciones circulares.

Instrucciones de montaje

El guiado lateral de la jaula puede realizarse bien por un resalte en el aro exterior, con anillos seeger fijados en las ranuras del aro exterior, o con arandelas distanciadoras.

La transmision de par puede ser aumentado si se unen lateralmente varias jaulas. En este caso, por favor, consultar con RINGSPANN los pares transmisibles.

Por favor, tengan en cuenta las anotaciones técnicas en la página 108 respecto a las pistas de rodadura.

Ejemplo de pedido

Jaula de rueda libre tamaño SF 44-14,5 para gran oscilación circular (T.I.R.):

• SF 44-14,5 P

Jaulas de rueda libre BWX

para completar con aro exterior e interior con elementos de bloqueo

Instrucciones de montaje

El guiado lateral de la jaula puede realizarse bien por un resalte en el aro exterior, con anillos seeger fijados en las ranuras del aro exterior, o con arandelas distanciadoras. No debe haber resaltes, hendiduras, chaflanes o cualquier tipo de excentricidad entre la cota "B". Para facilitar el montaje, se recomienda que el aro interior y el aro exterior tengan un chaflán en los laterales de 15° en una longitud de 3 mm, fuera de la zona de montaje.

Por favor, tengan en cuenta las anotaciones técnicas en la página 108 respecto a las pistas de rodadura.

Aplicación como

- Antirretroceso
- Embrague por adelantamiento
- Rueda libre de avance

Características

Las jaulas de rueda libre BWX son ruedas libres con elementos de bloqueo para ser instaladas entre el aro exterior y el aro interior, provistos por el cliente.

Par nominal hasta 4900 Nm.

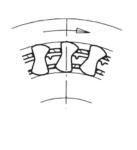
Despegue de los elementos de bloqueo

Cuando el aro exterior está girando, la fuerza centrífuga separa los elementos de bloqueo de la pista de rodadura del aro interior. En giro libre se reduce el desgaste de los elementos de bloqueo.

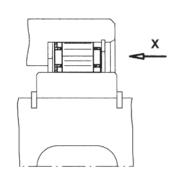
Enganche de los elementos de bloqueo

Cuando el aro exterior esta girando, la fuerza centrifuga presiona los elementos de bloqueo contra la pista de rodadura del aro interior. Esto mejora la capacidad de los elementos de bloqueo para bloquear de inmediato en el momento de transmision de un par.

Pestañas de deslizamiento


Para reducir el desgaste durante el giro libre entre los elementos de bloqueo y la pista de rodadura del aro interior, en diferentes tamaños, en el aro interior de la jaula se encuentran pestañas de deslizamiento, fabricadas en aleación de cobre-berilio resistentes al desgaste, que presionan al aro interior. Esto da como resultado el aumento de fricción entre el interior de la jaula y la pista de rodadura del aro interior. Esto contrarresta en giro libre la fuerza de presion de los muelles, que por lo tanto, reduce considerablemente la presion de los elementos de bloqueo sobre la pista de rodadura del aro interior.


Clips de freno


Algunos tamaños de jaula están disponibles con clips de freno instalados en el exterior de la jaula, para evitar la rotación no deseada de la jaula durante la aceleración y la desaceleración del aro exterior (por ejemplo, en ruedas libres de indexación).

para completar con aro exterior e interior con elementos de bloqueo

Mirando desde X, el aro exterior gira libre en sentido de las agujas del reloj

101-1 101-2 101-3

ance adel. ceso	Estándar Para uso universal	Dimensiones
oor 6	Para uso universal	
e de la		
alibr brac		
절 표 <u></u>		
₹ 7		
-		

Dund	la libre	Tipo	Par nominal	J +0,008	D	В	К	Elementos de bloqueo	Pestañas de deslizamiento	Clips de freno	Diseño según imagen	Peso
Rued	ia libre	Про	nominai M _N	-0,005 ±0,013		min.		3.54.55			94.1	
			Nm	mm	mm	mm	mm	Cantidad	Cantidad	Cantidad		kg
BWX	133590A	Despegue	63	22,225	38,887	10,0	44,0	12			101-2	0,03
BWX	13143A	Enganche	120	27,767	44,425	13,5	51,0	14			101-2	0,06
BWX	133392	Despegue	280	38,092	54,750	16,0	71,0	18			101-3	0,09
BWX	1310145	Despegue	180	41,275	57,937	13,5	74,2	14		3	101-2	0,07
BWX	132909A	Despegue	360	44,450	61,112	16,0	78,5	20	2	3	101-2	0,10
BWX	133339	Despegue	310	49,721	66,383	13,5	85,0	22	2	4	101-2	0,09
BWX	1310003	Despegue	310	49,721	66,383	13,5	85,0	22		4	101-2	0,09
BWX	137222	Enganche	570	49,721	66,383	19,0	85,0	22			101-2	0,12
BWX	1310445	Despegue	400	54,765	71,427	13,5	91,7	24			101-2	0,09
BWX	1310172	Enganche	540	54,765	71,427	16,0	91,7	24			101-2	0,12
BWX	1310226	Despegue	520	54,765	71,427	16,0	91,7	24	2	4	101-2	0,12
BWX	136709	Enganche	770	54,765	71,427	21,0	91,7	24	3	10	101-2	0,16
BWX	1310147	Despegue	1000	54,765	71,427	25,4	91,7	24	3	8	101-2	0,20
BWX	136324	Enganche	600	57,760	74,427	19,0	95,0	26			101-3	0,14
BWX	1310080	Despegue	670	72,217	88,882	13,5	115,0	30		4	101-2	0,12
BWX	13168	Enganche	1300	72,217	88,882	21,0	115,0	30			101-3	0,20
BWX	134012	Enganche	1300	72,217	88,882	21,0	115,0	30	4	10	101-3	0,20
BWX	137322	Despegue	2000	79,698 ²	96,363	25,4	124,0	34	5	12	101-2	0,28
BWX	138316	Despegue	2960	83,597 ²	102,596	25,4	131,6	34	5	12	101-2	0,30
BWX	13261A ¹	Despegue	1600	103,231 ²	119,893	16,0	154,0	40	6	10	101-3	0,19
BWX	13236	Despegue	1700	117,391 ²	136,391	16,0	175,3	30	5	6	101-3	0,25
BWX	133403B	Enganche	4900	123,881 ²	142,880	25,4	188,0	44		11	101-2	0,46

Ejemplo de pedido

Jaula de rueda libre tamaño BWX 13143A tipo estándar:

• BWX 13143A

Las Jaulas de rueda libre BWX están disponibles con plazos de entrega cortos. ¹ En este tamaño de jaula de rueda libre la cara de centrado del aro interior está en el lado derecho! ² La tolerancia de la pista de rodadura del aro interior se puede aumentar en \pm 0,013 mm!

El par nominal teórico, tiene solamente validez exisitiendo concentricidad perfecta entre el aro interior y exterior.

El par máximo transmisible es de 2 veces el par nominal especificado. Vea la página 14 para la determinación del par de selección.

Bloqueos irreversibles IR

RINGSPANN®

bloqueo bidireccional para completar con piezas de conexión con rodillos

Aplicación como

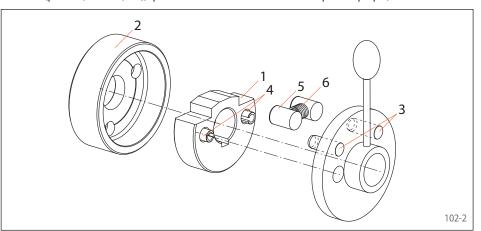
> A

Antirretroceso bidireccional

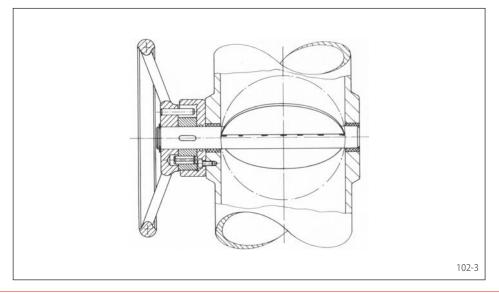
Características

Los bloqueos irreversibles IR son bloqueos bidireccionales de rodillos y con soporte de friccion. Listos para su montaje.

Par nominal hasta 100 Nm.


Diámetros interiores hasta 35 mm.

Mientras que una rueda libre normal transmite pares en un solo sentido de giro, con el bloqueo ireeversible IR es posible que la parte motriz arrastre un eje en ambos sentidos de giro. Por el contrario, existe una accion de bloqueo en contra de cualquier par inverso procedente de la parte accionada, con independencia del sentido de giro en el que se ejerza.


Funcionamiento

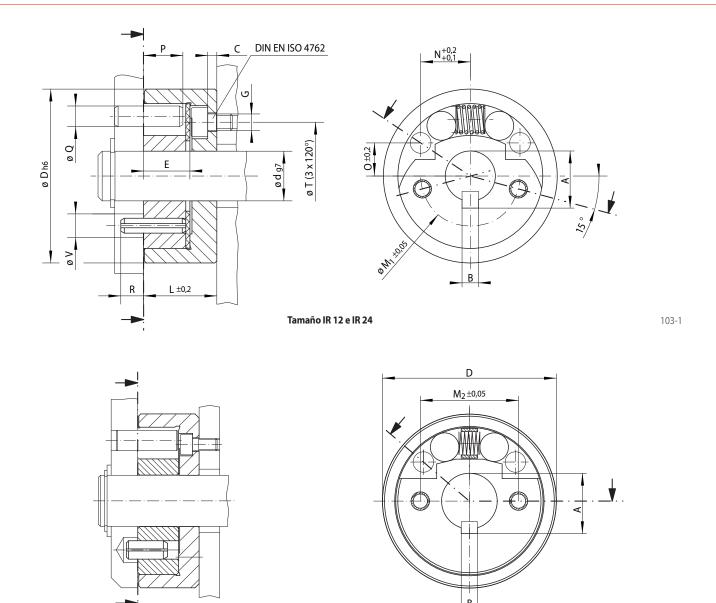
El cuerpo central (1) es unido al eje (parte accionada) por una chaveta. La carcasa (2) se atornilla, por ejemplo, al marco de la máquina, en una posición fija. La unidad actuadora proporcionada por el cliente (palanca, volante, etc), que actúacon los

pins de actuacion (3), se monta y apoya sobre el eje y tiene dos agujeros para sostener la unidad con dos pernos (4). Por lo tanto, si se aplica una fuerza en la unidad actuadora, independientemente de la dirección que se aplique, uno u otro de los

pins presiona uno de los rodillos de bloqueo (5) en contra de la fuerza de presión del propio muelle (6). De esta manera, la parte accionada conectada al cuerpo central se puede girar sin dificultad. El rodillo de bloqueo, opera como un mecanismo de rueda libre en sentido de giro libre. La disposición simétrica del bloqueo irreversible, permite el proceso descrito en la direccion opuesta. Sin embargo, si las fuerzas procedentes del interior de la máquina intentan hacer girar el cuerpo central a través del eje, el cuerpo central está unido a la carcasa es bloqueado por los rodillos. Cada rodillo de bloqueo lleva a cabo la función de bloqueo en un sentido de giro. Asi, el bloqueo irreversible IR impide movimientos no deseados. Los bloqueos irreversibles IR no son adecuados en aplicaciones, cuando la parte accionada tiende a ir mas deprisa que la parte actuadora (por ejemplo ascensores, montacargas, gruas, etc) durante el proceso de frenado en descenso de cargas.

Ejemplo de aplicación

La válvula, que en el ejemplo que se muestra sirve como válvula de control o de cierre, se abre o se cierra por medio de un volante.


El bloqueo irreversible IR impide cualquier cambio de posición de la válvula, debido a la presión ejercida por el medio que fluye en la tubería.

El uso de los bloqueos irreversibles IR no se limita solamente a las válvulas de accionamiento manual, sino también se pueden utilizar con accionamientos motorizados. En este caso existe la ventaja particular de la selección del motor, al ser el par accionador en general bajo, ya que todos los pares de retroceso y puntas de par, son absorbidos por el bloqueo irreversible IR.

Bloqueos irreversibles IR

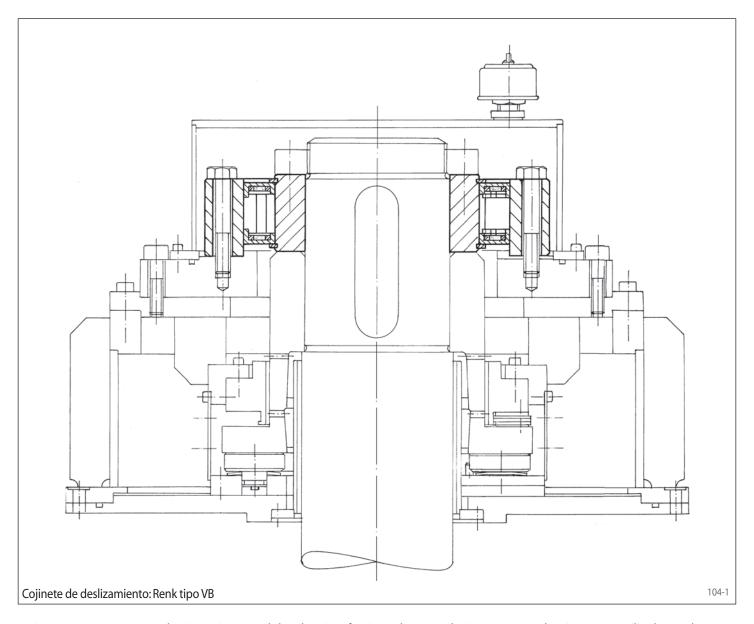
bloqueo bidireccional para completar con piezas de conexión con rodillos

Tamaño IR 44 e IR 68	103-2

	Antirretroce	Par	ra uso universal																			
Rueda	libre	Tipo	Par nominal M _N	Diámetro d	A*	B*	С	D	E	G**	L	M ₁	M ₂	N	0	Р	Q	R	T**	V	Z**	Peso
			Nm	mm	mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm		kg
IR	12	R	8	12	13,8	4	2,2	42	11,2	M4	17,7	24		12,0	8,0	9,5	5	5,5	26	5,7	3	0,15
IR	16	R	15	16	18,3	5	3,0	48	12,2	M5	20,4	28		13,5	9,5	10,5	5	9,5	28	9,8	3	0,22
IR	25	R	48	25	28,5	8	3,2	85	20,0	M6	30,0		48	22,5	19,1	19,5	10	5,5	55	12,2	3	1,10
IR	35	R	100	35	38,5	10	4,5	120	32,0	M8	45,0		70	27,0	32,2	31,5	12	8,5	80	14,2	3	3,30

El par de transmisión máximo es de 2 veces el par nominal especificado.

Ejemplo de pedido


Estándar

Irreversible IR 16 R, tipo estándar con diámetro 16 mm:

• IR 16 R, d = 16 mm

^{*} Ranura de chaveta según DIN 6885, hoja 3 • Tolerancia del ancho de la ranura JS10.

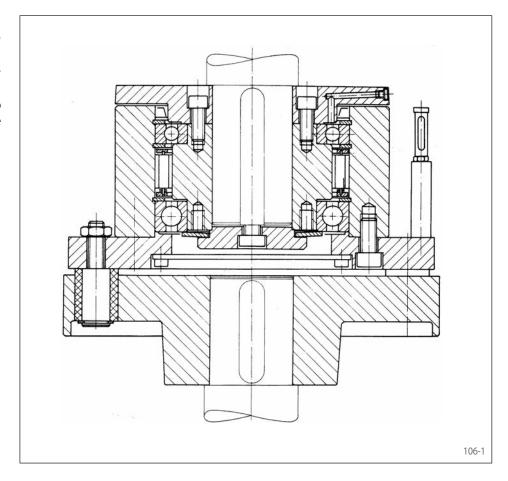
** Z = número de agujeros roscados G en el círculo primitivo T.

Antirretrocesos FXM ... LX en el accionamiento de bombas grandes para centrales eléctricas: para garantizar la fiabilidad de servicio requerida, el circuito dispone de varias bombas conectadas en paralelo según el principio de redundancia, ofreciendo además la posibilidad de adaptar el caudal a las necesidades correspondientes con un aprovechamiento óptimo de la capacidad de las bombas.

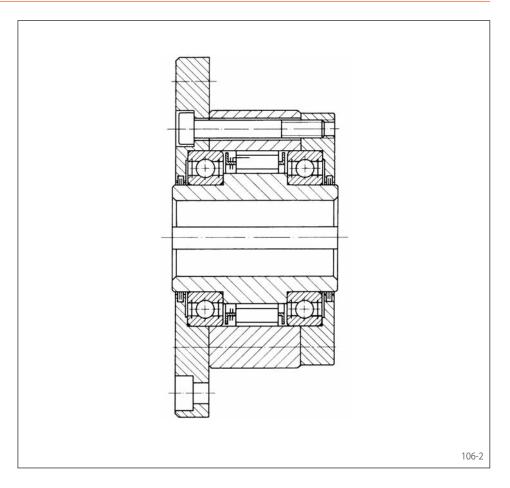
El cometido de los antirretrocesos es el de impedir que el medio transportado retroceda bajo su propia carga cuando las bombas estén paradas, evitando así el accionamiento como turbina, mientras que las demás bombas del grupo de bombas sigan funcionando. Las revoluciones y fuerzas centrífugas que se presentan en tales casos destruirían tanto la bomba como el motor de accionamiento, causando paradas y altos costes de reparación.

El antirretroceso se encuentra ubicado inmediatamente encima del cojinete de deslizamiento de la bomba o, tal como se aprecia en la fig. 104-1, encima del cojinete de deslizamiento del motor eléctrico. Dado el juego interno de los cojinetes de deslizamiento, imprescindible para el funcionamiento, y las tolerancias inevitables de las piezas contiguas, se requiere una alta capacidad de desplazamiento del dispositivo de bloqueo. El antirretroceso utilizado, con despegue X de los elementos de bloqueo y con el aro interior girando libremente, permite una oscilación circular de hasta 0,8 mm.

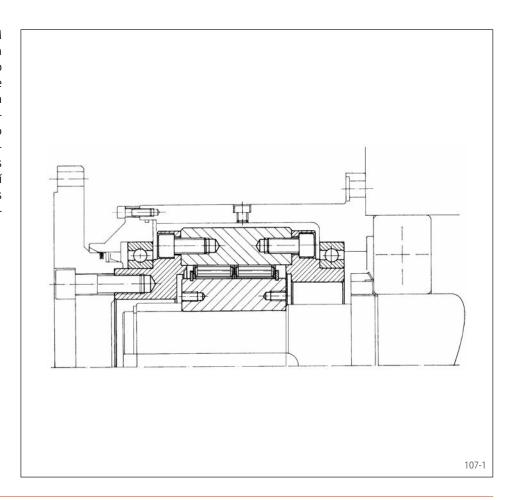
En funcionamiento normal (en vacío), el antirretroceso funciona completamente sin contacto, debido al despegue de los elementos de bloqueo. Los elementos de bloqueo están, por tanto, libres de desgaste, teniendo una duración de vida prácticamente ilimitada. La neblina de aceite existente protege el antirretroceso de la corrosión.


Antirretroceso FXM 2.410 - 100 LX para la bomba primaria de agua de refrigeración en una central nuclear. Par máximo 500 000 Nm. Velocidad 1485 min⁻¹, en servicio desde 1996. Fabricado y probado, y con documentación extensa de RINGSPANN GMBH, Bad Homburg.

Instalación de cintas transportadoras para mineral de hierro en Sudáfrica accionadas por tres reductores con antirretrocesos FXRT 170 – 63 MX de RINGSPANN.

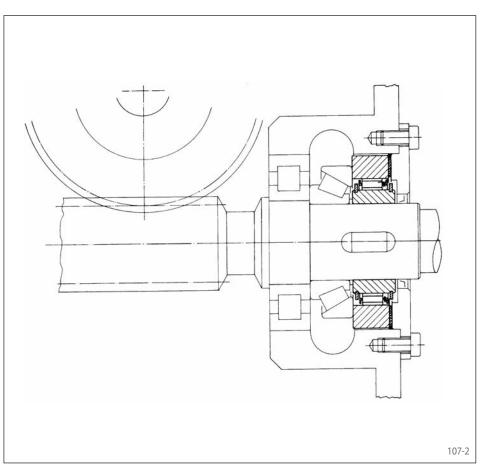

Embrague por adelantamiento especial para montaje vertical, combinado con acoplamiento elástico de pernos. Esta ejecución se utiliza en los accionamientos dobles de precalentadores de aire en centrales térmicas de carbón.

El embrague por adelantamiento es necesario para ambos accionamientos para que el lado de salida no arrastre al accionamiento parado.



Embrague por adelantamiento especial con despegue Z de los elementos de bloqueo de forma, libre de mantenimiento. Debido a las altas revoluciones en vacío del aro exterior, no es necesaria la lubricación de los elementos de bloqueo de forma del embrague por adelantamiento, ya que por las fuerzas centrífugas estos despegan del aro interior inmóvil, siendo así libres de desgaste.

Asimismo, estos embragues por adelantamiento disponen de rodamientos de bolas obturados y juntas laberínticas, por lo que son libres de mantenimiento.


Embrague por adelantamiento especial FXM 2.240 - 96 LX en el accionamiento auxiliar de un molino. En este embrague por adelantamiento especial los rodamientos giran únicamente cuando el molino es accionado lentamente a través del accionamiento auxiliar con el embrague por adelantamiento bloqueado. El aro interior con las jaulas montadas gira a revoluciones altas, pero funciona sin contacto gracias al despegue X de los elementos de bloqueo. Así se evita tanto el sobrecalentamiento de los rodamientos como el desgaste de los elementos de bloqueo de forma.

Rueda libre externa especial FON 82 SFR utilizada como freno accionado por el peso de la carga en un reductor helicoidal no autobloqueante. La carga se eleva o desciende a través del tornillo sin-fin. El eje helicoidal dispone de una rueda libre, cuyo aro exterior está unido a la carcasa del reductor mediante fricción.

Al elevar la carga, el aro interior gira libremente y la rueda libre funciona en vacío. Durante una parada, los elementos de bloqueo enganchan y el momento restablecedor de la carga se transmite a la carcasa del reductor a través del forro de fricción. Cuando la carga desciende, la rueda libre sigue estando bloqueada y el motor vence el momento de fricción del freno.

En este caso, una jaula de rueda libre especial, diseñada tanto con elementos de bloqueo de forma como con rodillos cilíndricos, garantiza el centrado de los aros exterior e interior.

Rodamientos y apoyos

En la construcción de las ruedas libres sin soporte propio, los aros exterior e interior deben alojarse concéntricamente y con la menor holgura posible. Los elementos de bloqueo no centran el aro exterior con respecto al aro interior. Al exceder la oscilación circular admisible indicada, el par transmisible disminuye y pueden presentarse fallos en el funcionamiento. El cliente debe comprobar las cargas a soportar por ruedas libres con soporte propio, observando las bases de cálculo de los fabricantes de los rodamientos. Solicite la documentación correspondiente a los tipos y distancias de los rodamientos montados.

Las series FDN y FD en ejecución CFR disponen de un soporte propio para absorber las fuerzas radiales. Adicionalmente debe proveerse un segundo soporte propio para poder absorber las fuerzas axiales y de inclinación.

Las fuerzas axiales entre los aros interior y exterior no deben desviarse a través de los elementos de forma o los rodillos de bloqueo, ya que ello interferiría en la correcta transmisión del par, por lo que entre el aro interior y el exterior no debe haber ningún juego axial. La mejor solución constructiva son los rodamientos con pretensado axial.

Cargas centrales

Las fuerzas que actúan sobre la rueda libre (bielas, tracción de correa, etc.) deben hacerlo entre los rodamientos de la rueda libre. Si la línea de acción de la fuerza transversal se encuentra fuera de los rodamientos, debe proveerse un rodamiento rígido o pretensado. De lo contrario, se reduce la duración de vida de la rueda libre. En las ruedas libres de avance, las cargas centrales son la condición previa para alcanzar la precisión de indexación y duración de vida más altas.

Tornillos de fijación para las piezas complementarias

En las ruedas libres sin aro interior (la serie FD) el cliente fabricará el aro interior correspondiente Para las jaulas de rueda libre, el cliente fabricará los aros exterior e interior correspondientes. Esta unión atornillada no es comparable a las uniones atornilladas convencionales como las indicadas en VDI 2230. El par en las ruedas libres es pulsante, es decir, la fuerza tan-

gencial en el tornillo se aplica en una sola dirección. La unión entre el aro exterior y la pieza complementaria no es meramente por fricción, ya que la expansión elástica del aro exterior durante la transmisión del par lleva a desplazamientos de las partes unidas, hasta que los tornillos lleguen a apoyarse en la dirección tangencial. Por ello, las uniones atornilladas en rue-

das libres deben calcularse teniendo en cuenta el cizallamiento. Queda probado que para estos tornillos de fijación la calidad 8.8 es suficiente. Dada su mayor fragilidad, no deberían utilizarse tornillos de la calidad 12.9. Los pares de apriete para los tornillos de fijación deben aplicarse los valores según VDI 2230, de acuerdo con los valores de fricción presentes en cada caso.

Superficie de rodadura de los elementos de bloqueo

El aro interior y la superficie de rodadura de las ruedas sin aro interior (la serie FD), y los aros exterior e interior con su superficie de rodadura de las jaulas antirretorno, serán fabricados por el cliente. La superficie de rodadura debe templarse y mecanizarse (rectificado o torneado duro), presentando después las siguientes características:

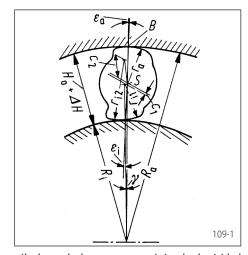
- Conicidad: ≤ 3 µm por 10 mm de ancho de superficie de rodadura
- Rugosidad según DIN 4768, hoja 1:1,6 µm ≤ Rz ≤ 6,3 µm
- Dureza:62 ± 2 HRc

Con temple por cementación:

Profundidad de temple por cementación según DIN 50190, hoja 1:1,5 ... 2 mm, dureza límite HG = 550 HV1, resistencia del núcleo≥1100 N/mm² Solicite nuestro asesoramiento si desea utilizar otros procesos de endurecimiento o procesos que se desvían de las prescripciones indicadas. Para facilitar el montaje de la rueda libre, debe proveerse un chaflán en la superficie de rodadura de los elementos de bloqueo de forma de aprox. 2 x 30°.

Par transmisible

La selección del par transmisible de una rueda libre exige el conocimiento de la relación entre los elementos de bloqueo y los aros de la rueda libre.

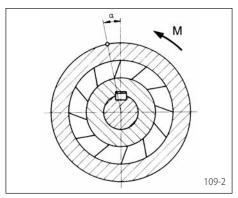

La fórmula para el ángulo de bloqueo interno en una rueda libre con elementos de bloqueo y pistas de rodadura cilíndricas de los aros interior y exterior (véase fig. 109-1) es la siguiente:

$$\tan \epsilon_{i} = \frac{Ra}{Ra - Ri} \sqrt{\frac{c^{2} - (Ri + ri - Ra + ra)^{2}}{(Ri + ri)(Ra - ra)}}$$

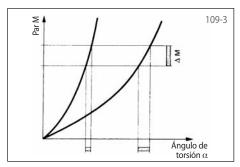
Al seleccionar el par transmisible, también deben tenerse en cuenta las deformaciones elásticas de los aros de la rueda libre. Dichas deformaciones se deben a las altas fuerzas radiales que ejercen los elementos de bloqueo sobre los aros durante el bloqueo. Para ello deben realizarse unas ecuaciones diferenciales que describen la relación entre las tensiones y la deformación de los aros. La presión superficial de Hertz en los puntos de contacto entre los elementos de bloqueo y las superficies de rodadura se calcula según las series Fourier y se utiliza en las ecuaciones diferenciales como condición supletoria. Con las fuerzas que aumentan constantemente, se calculan mediante método iterativo los valores geométricos, la deformación y las tensiones y se comparan con los valores límite admisibles. Deben observarse los siguientes límites:

- Presión de Hertz en los puntos de contacto
- Límite del ángulo de bloqueo
- Tensiones tangenciales en los aros
- Límite del ángulo de posición de los elementos de bloqueo de forma

El cálculo también considera la oscilación circular de las pistas de rodadura. Asimismo, del método de



cálculo resulta la curva característica de elasticidad de la rueda libre (véase fig. 109-3), necesaria para los cálculos dinámicos de una instalación completa.


Curva característica de elasticidad

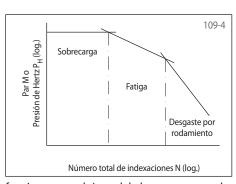
Aparte de la transmisión del par, en muchas aplicaciones también es decisivo el comportamiento elástico de la rueda libre durante el bloqueo (en arrastre). El aro exterior y el interior giran más el uno contra el otro cuanto más alto sea el par M a transmitir (fig. 109-2). La relación numérica entre el par M y el ángulo de torsión la representa la curva característica de elasticidad de la rueda libre. También el cálculo de la curva característica de elasticidad se realiza en base a los parámetros geométricos y las ecuaciones de deformación. La fig. 109-3 muestra claramente lo importante que es dicha curva para la aplicación como rueda libre de avance.

Se muestran las curvas características de elasticidad de una rueda libre "blanda" (curva plana) y

"dura" (curva inclinada). Al variar el par de accionamiento M, p. ej. por el valor Δ M, el efecto en el ángulo de torsión α es mayor en la rueda libre con curva plana que en aquella con curva inclinada.

Para los accionamientos de avance siempre se seleccionarán unas ruedas libres con la curva característica lo más inclinada posible.

Frecuencias y vida útil de indexación en las ruedas libres de avance


En las ruedas libres de avance, la frecuencia máxima de indexación y la duración de vida en función de dicha frecuencia son unos parámetros de selección importantes.

Frecuencia de indexación máxima:

La frecuencia de indexación de una rueda libre determinada no es un valor de definición fija, ya que en la rueda libre influyen diversos factores de toda la construcción de la máquina. Las más importantes son: tipo de máquina, magnitud y transcurso del par y del ángulo de indexación, exactitud de indexación requerida, tipo de construcción de la rueda libre de avance, tipo de lubricación, accionamiento de la rueda libre por el aro interior o exterior. Esta enumeración incompleta demuestra que no se pueden hacer declaraciones generales referentes a la frecuencia máxima de una rueda libre de catálogo. De las RL de catálogo aplicadas con éxito se conocen frecuencias máximas de aprox. 800 indexaciones por minuto.

Vida útil de indexación:

A la vida útil de indexación se aplican unas reglas similares que a la frecuencia máxima de indexación, dado que en la rueda libre influyen los mismos factores. No es posible calcular un número total exacto de indexaciones para una determinada rueda libre de catálogo. Las investigaciones de la asociación de investigación de las técnicas de transmisión FVA han aclarado ciertas relaciones, no obstante, las condiciones en los bancos de pruebas son prácticamente ideales y no pueden simplemente transferirse a las condiciones de uso en la práctica. Según las investigaciones, el número total de indexaciones de las ruedas libres de avance depende especialmente del par y de la presión de Hertz resultante en los puntos de contacto. La fig. 109-4 muestra esquemáticamente que hay que diferenciar tres áreas: sobrecarga, fatiga y desgaste por rodamiento. Las RL de avance han de seleccionarse de modo que

funcionen en el área del desgaste por rodamiento, lo cual permite alcanzar un número total de indexaciones de más de 1 x 10⁸. Con una frecuencia de indexación de 100 indexaciones/min se alcanza así una duración de vida de aprox. 16 666 h.

Revoluciones máx. y vida útil de antirretrocesos y embragues por adelantamiento

Las revoluciones máximas admisibles de las ruedas libres utilizadas como antirretrocesos o embragues por adelantamiento dependen principalmente de los siguientes factores:

- vida útil en vacío
- lubricación y disipación de calor
- ejecución de la rueda libre

<u>Dependencia de las revoluciones máximas de la vida útil en vacío requerida</u>

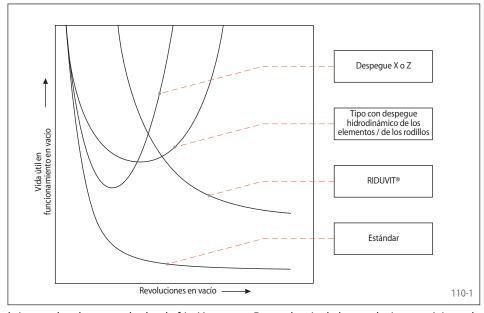
Como cualquier otra pieza de deslizamiento, las ruedas libres con elementos de forma o rodillos de bloqueo presentan desgaste. Este desgaste aumenta con las revoluciones relativas de las dos partes de deslizamiento. RINGSPANN ha desarrollado diferentes tipos con los que se puede reducir y hasta invertir este efecto. La fig. 110-1 muestra el transcurso cualitativo de la vida útil en vacío de los diferentes tipos de antirretrocesos y embragues por adelantamiento (véase pág. 12 y 13).

Las revoluciones máximas indicadas en las tablas de este documento deben verse siempre en relación con la vida útil en vacío mínima requerida (excepto en los tipos con despegue X,Z o hidrodinámico).

Solicite más información acerca de la vida útil en vacío, indicando las condiciones de servicio.

Las revoluciones máximas indicadas en las tablas en este documento se aplican a temperaturas ambiente de 20°C, variando las revoluciones máximas para temperaturas ambiente diferentes y ruedas libres especiales.

Principalmente pueden alcanzarse revoluciones mayores mediante medidas constructivas que difieren del estándar. En tal caso, rogamos se pongan en contacto con nosotros, utilizando el cuestionario correspondiente que encuentra en las pág. 112 o 113.


<u>Dependencia de las revoluciones máximas de la lubricación y la disipación de calor</u>

Referente a la lubricación y la disipación de calor, deben observarse dos revoluciones límite principales:

- límite de la temperatura de servicio máxima admisible
- límite de envejecimiento del lubricante

Temperatura de servicio máxima admisible:

Las revoluciones máximas admisibles de una rueda libre en funcionamiento en vacío se alcanzan, entre otros, cuando se alcance la temperatura máxima admisible. Las ruedas libres se lubrican con aceite o con grasa para minimizar la fricción entre las partes de deslizamiento durante el funcionamiento en vacío. Además, el lu-

bricante absorbe tanto el calor de fricción que se genera como el las partículas del desgaste abrasivo de los puntos de contacto. Principalmente debe tenerse como objetivo la lubricación con aceite, ya que es ideal para las tareas mencionadas.

En las ruedas libres completas e incorporadas de las series ZZ ..., que forman una unidad de elementos de bloqueo, soporte propio, retenes y relleno con grasa, existen principalmente cuatro fuentes de calor que limitan las revoluciones máximas admisibles de la rueda libre:

- calor de fricción de los retenes
- calor de fricción del lubricante
- calor de fricción de los elementos de bloqueo
- calor de fricción de los rodamientos

La mayor parte del calor de fricción se evacua al ambiente. Por tanto, las condiciones ambientales (temperatura ambiente, velocidad del aire, etc.) influyen en la temperatura de servicio y limitan las revoluciones de las ruedas libres completas e incorporadas de las series ZZ

Envejecimiento del lubricante:

El lubricante envejece debido a la carga mecánica y, después de una duración de vida determinada, ya no puede garantizar la minimización del coeficiente de fricción y la protección contra el desgaste en la medida necesaria. La velocidad de envejecimiento depende también de las revoluciones en vacío. En el caso de que no se pueda o deba cambiar el lubricante, debe tenerse en cuenta el envejecimiento del lubricante al determinar las revoluciones máximas. Solicite más información.

<u>Dependencia de las revoluciones máximas de la ejecución de la rueda libre</u>

Las fuerzas centrífugas generadas durante la rotación ejercen una carga en todos los componentes de la rueda libre. Al determinar las revoluciones admisibles, se ha considerado la carga máxima admisible de los componentes. Asimismo, debe observarse la duración de vida de los rodamientos, para la que se aplican las prescripciones de los fabricantes. Por razones económicas, las revoluciones máximas de una rueda libre estándar satisfacen la mayoría de las aplicaciones. Pueden alcanzarse mayores revoluciones mediante las medidas constructivas correspondientes.

Las revoluciones máximas para las ruedas libres con base FBO y también para las ruedas libres externas FON, que se indican en las tablas de este documento, se aplican a las condiciones de montaje para ruedas libres completas. Al conocer las condiciones de montaje reales, pueden admitirse eventualmente unas revoluciones mayores. Rogamos nos envíen su solicitud, utilizando el cuestionario correspondiente que encontrará en las pág. 112 y 113.

Lubricación

Para cada serie se indica la lubricación estándar (aceite o grasa) en las correspondientes páginas del catálogo. En caso de desear una ejecución diferente, póngase en contacto con nosotros.

Los lubricantes recomendados en la tabla más abajo para los diferentes campos de temperatura ambiente se han seleccionado principalmente con respecto al buen funcionamiento de los elementos de forma y rodillos de bloqueo durante el arranque de la máquina o instalación. Cuando la rueda libre lleve funcionando un determinado tiempo, la temperatura de servicio en la rueda libre será superior a la temperatura ambiente. Para dicha temperatura de servicio debe verificarse si el poder lubricante del aceite base que contiene el aceite o la grasa sique siendo suficiente para los rodamientos montados en la rueda libre. En casos críticos queda probada la utilización del aceite sintético MOBIL SHC 626 altamente resistente al envejecimiento.

Lubricación con aceite

La lubricación debe realizarse con un aceite no resinificante con una viscosidad cinemática según la tabla de lubricantes abajo indicada.

La cantidad de aceite para las ruedas completas y con carcasa, que disponen de lubricación estándar con aceite, se indica en las instrucciones de montaje y servicio.

Las ruedas libres externas FXM e incorporadas FXN pueden operar con lubricación por sumersión, por circulación o sin lubricación de aceite, cuando funcionan a revoluciones superiores a las de despegue. En estas series se admite la utilización de aceites y grasas con aditivos (disulfuro de molibdeno) que reducen el coeficiente de fricción. Para el servicio sin lubricación de aceite, los elementos de bloqueo y las pistas de rodadura del aro exterior deben untarse con grasa fluida adecuada previo al montaje, siguiendo las instrucciones de montaje y servicio.

En las construcciones con ruedas libres con base, externas FON e internas con lubricación de aceite, la pista de rodadura del aro interior debe sumergirse en el aceite. En caso de no poder utilizar la lubricación por sumersión, debe proveerse una lubricación por circulación que se encargue de engrasar continuamente la pista de rodadura del aro interior.

Lubricación con grasa

Las ruedas libres FA, FAV y ZZ ... disponen de una lubricación permanente, son libres de mantenimiento y no necesitan reengrase.

Para aumentar la duración de vida de las ruedas libres con lubricación con grasa, dichas ruedas libres deben desmontarse, limpiarse, comprobarse y reengrasarse después de aprox. dos años. Para las grasas recomendadas, consulte la tabla de lubricantes.

<u>Atención</u>

Los aceites y grasas que contienen aditivos que reducen el coeficiente de fricción, como disulfuro de molibdeno o similares, sólo pueden utilizarse bajo autorización de RINGSPANN. Excepción: las ruedas libres externas FXM y las incorporadas FXN.

Tabla de lubricantes

Fabricante	Aceite			Grasa
	Para temperaturas ambiente de 0°C a +50°C Viscosidad cinemática a 40°C, ISO-VG 46/68 [mm²/s]	Para temperaturas ambiente de -15°C a +15°C Viscosidad cinemática a 40°C, ISO-VG 32 [mm²/s]	Para temperaturas ambiente de -40°C a 0°C Viscosidad cinemática a 40°C, ISO-VG 10 [mm²/s]	Para temperaturas ambiente de -15°C a +50°C
Agip	OSO 46/68	OSO 32	OSO 10	
ARAL	VITAM GF 46/68	VITAM GF 32	VITAM GF 10	ARALUB HL2
ВР	ENERGOL HLP-HM 46/68	ENERGOL HLP-HM 32	ENERGOL HLP-HM 10	ENERGREASE LS2
CASTROL	VARIO HDX	VARIO HDX	ALPHASYNT 10	
CHEVRON	HYDRAULIC OIL AW 46/68	HYDRAULIC OIL AW 32	RANDO HD 10	
KLÜBER	LAMORA HLP 46/68	LAMORA HLP 32	Klüberoil 4 UH1-15	ISOFLEX LDS 18 Spezial A POLYLUB WH 2 Klübersynth BM 44-42
MOBIL	DTE 25/26 NUTO H 46/68	DTE 24 NUTO H 32	DTE 10 Excel 15 UNIVIS HVI 13	MOBILUX EP 2
SHELL	TELLUS 46/68	TELLUS 32	TELLUS T 15	ALVANIA RL2
TOTAL	AZOLLA ZS 46/68	AZOLLA ZS 32	EQUIVIS XLT 15	MULTIS EP 2
Otros fabricantes	Aceites para reductores o aceites hidráulicos sin lubri- cantes sólidos ISO-VG 46/68	Aceites para reductores o aceites hidráulicos sin lubri- cantes sólidos ISO-VG 32; Automatic-Transmission Fluids [ATF]	Aceites para reductores o aceites hidráulicos sin lubri- cantes sólidos ISO-VG 10, observar el punto de fluidez Aceites hidráulicos para aviación ISO-VG 10	

Con temperaturas superiores a 50°C e inferiores a -40°C rogamos nos consulten.

Cuestionario para la selección de los antirretrocesos RINGSPANN

Rogamos fotocopie esta página o utilice el documento en PDF de nuestra página web. Empresa: Fecha: Dirección: Nº consulta: Teléfono: Nombre compl.: Fax: Dpto.: E-mail: 1. Aplicación del antirretroceso 1.1 Tipo de máquina: 1.3 Ubicación: 1.4 Al ser posible, incluya especificación, hoja de datos, croquis o plano con las dimensiones Muñón del eje de conexión. Para cintas transportadoras: Diámetro: Largo: _____ mm Ángulo del recorrido más inclinado ____ ¿Dispone de accionamiento múltiple? ☐ Sobre un eje continuo □Sí □No Nº de accionamientos ____ Diámetro: _____ mm 1.2 Punto de montaie: ☐ En la polea de transmisión ■ Reductor ☐ En la rueda dentada ■ Motor ☐ Otros: 2. Datos de servicio 2.1 Nº de revoluciones en el punto de montaje 2.2 Potencia nominal del accionamiento 2.4 Momento recuperador máx. $P_0 = \underline{\hspace{1cm}} kW$ (antirretrocesos) $n_{sp} = \underline{\qquad} min^{-1}$ $M_{m\acute{a}x} = \underline{\hspace{1cm}} Nm$ ¿Existe la posibilidad de montar el antirretro-2.3 ¿Debe el antirretroceso absorver el pico de 2.5 Fuerza elevadora instalación de transporte ceso sobre un eje que gire a alta velocidad? par que se genera en dirección del bloqueo $P_L = \underline{\hspace{1cm}} kW$ al arrancar el motor (motor conexionado (Mayores revoluciones = par reducido = 2.6 Rendimiento de la máquina entre el antirretroceso de menor tamaño) Al ser incorrectamente)? (En caso afirmativo, el antirretroceso y el punto de accionamiento posible, incluya plano con explicaciones. antirretroceso debe sobredimensionarse en la medida correspondiente.) 2.7 Número de bloqueos por día: ____ □Sí □No 2.8 Tiempo de servicio por día: _____ 3. Condiciones de montaje 3.2 ¿Debe el antirretroceso ser desbloqueable? 3.1 Abierto, al aire libre 3.6 ¿Se encuentra un elemento elástico entre el ☐ Sí, en caso de necesidad antirretroceso y la instalación a bloquear? ☐ Abierto, en el interior (Los acoplamientos elásticos a la torsión ☐ Sí, con frecuencia ☐ En la carcasa de la máquina generan elevados picos de par en el 3.3 Temperatura ambiente en la rueda libre: Lubricación por baño de aceite, momento del bloqueo.) niebla de aceite en la carcasa de de ______°C a _____°C □Sí □No la máquina 3.4 Otros (como accesibilidad, generación de ☐ Conexión al sistema central de polvo y otras influencias ambientales que pudieran ser importantes): lubricación es posible Denominación del lubricante: Viscosidad cinemática: _____ mm²/s _ 4. Cantidades previstas ___ Uds. (pedido único) 5. Anexos

Especificaciones

RINGSPANN GmbH

☐ Hoja de datos

☐ Croquis/plano

+49 6172 275-275

stionarios para la selección

Cuestionario para la selección de los embragues por adelantamiento RINGSPANN

Rogamos fotocopie esta página o utilice el documento en PDF de nuestra página web. Empresa: Fecha: Dirección: Nº consulta: Teléfono: Nombre compl.: Fax: Dpto.: E-mail: 1. Aplicación del embrague por adelantamiento 1.1 Tipo de máquina, grupo de máquina 1.2 Ubicación del embrague por adelantao instalación en el que se utilizará el miento (al ser posible, incluya especificación, embrague por adelantamiento: hoja de datos, croquis o plano con las dimensiones de conexión). 2. Datos de servicio 2.1 En arrastre, el accionamiento del embrague 2.5 ¿Debe el embrague por adelantamiento combinarse con un acoplamiento por adelantamiento se realizará por: (Importante para los accionamientos que transmiten su par máximo por debajo del compensador? ■ Motor asíncrono número de revoluciones nominal.) □ Arranque directo ☐ con un acoplamiento elástico ☐ con un acoplamiento rígido **□** Arrangue λ - Δ 2.4 No de revoluciones Otros electromotores 1. En arrastre: de _____ min⁻¹ a _____ min⁻¹ 2.6 Si en el arranque deben acelerarse masa mayores: ☐ Motor de combustión interna 2. En vacío: (con el embrague por adelantamiento Momento de inercia: $J = \underline{\hspace{1cm}} kgm^2$ Nº de cilindros: ____ desacoplado) N° de rev. de la masa: n =Primario (accionamiento) 2.7 Las oscilaciones de par generan los siguien-☐ Turbina de _____ min⁻¹ a _____ min⁻¹ tes pares límite durante el arrastre: ☐ Otros (indique detalles): Secundario (accionamiento) de _____ min⁻¹ a _____ ☐ Par máximo o mínimo no conocido 2.2 En arrastre debe transmitirse: 2.8 Tiempo de servicio por día: _____ Horas (h) Potencia: _____kW, o bien, de los que _____(h) son en arrastre de los que _____ ___ (h) son en vacío 3. Condiciones de montaje 4. Cantidades previstas 3.1 Abierto, al aire libre 3.2 Temperatura ambiente en la rueda libre: __ Uds. (pedido único) ☐ Abierto, en el interior de _____° C a _____° C _ Uds./mes ☐ En la carcasa de la máquina 3.3 Otros (como accesibilidad, generación de Uds./año Lubricación por baño de aceite, polvo y otras influencias ambientales que niebla de aceite en la carcasa de pudieran ser importantes): 5. Anexos la máquina ■ Especificaciones ☐ Conexión al sistema central de ☐ Hoja de datos lubricación es posible ☐ Croquis/plano Denominación del lubricante: Viscosidad cinemática: _____ mm²/s __

RINGSPANN GmbH

Cuestionario para la selección de las ruedas libres de avance RINGSPANN

Rogamos fotocopie esta página o utilice el documento en PDF de nuestra página web. Empresa: Fecha: Dirección: Nº consulta: Teléfono: Nombre compl.: Fax: Dpto.: E-mail: 1. Aplicación de la rueda libre de avance 1.1 Tipo de máquina, grupo de máquina o 1.2 Ubicación de la rueda libre de avance (al ser instalación en el que se utilizará la rueda posible, incluya especificación, hoja de datos, croquis o plano con las dimensiones de conelibre de avance: 2. Datos de servicio 2.1 Ángulo de indexación de la rueda libre de 2.4 El movimiento de vaivén es generado por 2.5 Dimensiones del eje previstas: avance: Diámetro _____ mm un mecanismo de manivela de _____° a ____ ° Largo _____ mm un cilindro hidráulico un cilindro neumático 2.6 Par normal: 2.2 No de indexaciones por minuto: un disco de levas M = _____Nm de _____/min a _____/min ☐ Otros (indique detalles): Par máximo: 2.3 Lo que realiza el movimiento de vaivén es $M_{m\acute{a}x} = \underline{\hspace{1cm}} Nm$ el aro exterior de la rueda libre (incluyendo los picos de par) ☐ el aro interior de la rueda libre 2.7 Tiempo de servicio por día: 3. Condiciones de montaje 4. Cantidades previstas 3.2 Temperatura ambiente en la rueda libre: 3.1 Abierto, al aire libre _____ Uds. (pedido único) _____ Uds./mes de _____°C a _____°C ☐ Abierto, en el interior ____ Uds./año 3.3 Otros (como accesibilidad, generación de ☐ En la carcasa de la máquina polvo y otras influencias ambientales que pu-Lubricación por baño de aceite, dieran ser importantes): niebla de aceite en la carcasa de la máquina ☐ Conexión al sistema central de lubricación es posible Denominación del lubricante: Viscosidad cinemática: _____ mm²/s _____° C 5. Anexos Especificaciones ☐ Hoja de datos ☐ Croquis/plano

RINGSPANN GmbH

Cuestionario para la selección de las ruedas libres con carcasa RINGSPANN FH

Rogamos fotocopie esta página o utilice el documento en PDF de nuestra página web. Empresa: Fecha: Dirección: Nº consulta: Teléfono: Nombre compl.: Fax: Dpto.: E-mail: 1. Aplicación de las ruedas libres con carcasa 1.1 Tipo de instalación: 1.2 Tipo de máquina: ___ Accionamiento Accionamiento RL con RL con $X \rightarrow$ Máquina a accionar **← X** carcasa A carcasa B 2. Datos de servicio Rueda Libre con carcasa A Rueda Libre con carcasa B 2.1 En arrastre, el accionamiento se realizará por: Motor asíncrono Motor asíncrono Arrangue directo □ Arrangue λ-Δ ☐ Arrangue directo **□** Arrangue λ - Δ Otros electromotores Otros electromotores Tipo: _ Tipo: _ ☐ Motor de combustión interna ☐ Motor de combustión interna _____ Nº de cilindros: _ Tipo: _____ No de cilindros: _ Tipo: Turbina Turbina ☐ Otros (indique detalles): ☐ Otros (indique detalles): 2.2 Revoluciones en arrastre de _____ min⁻¹ a _____ min⁻¹ de _____ min⁻¹ a _____ min⁻¹ de _____ min⁻¹ a _____ min⁻¹ Revoluciones en vacío 2.3 Dirección de giro en arrastre visto en ☐ En sentido contrario a las aquias del reloj ☐ En sentido contrario a las aquias del reloi ☐ En sentido de las agujas del reloj ☐ En sentido de las agujas del reloj 2.4 En arrastre debe transmitirse: Potencia: Potencia: _ Par: ______Nm 2.5 Par máx. según el cálculo de las vibraciones torsionales 2.6 ¿Debe la rueda libre con carcasa combinarse con acoplamiento elástico con acoplamiento elástico con un acoplamiento compensador? con acoplamiento rígido a la torsión ☐ con acoplamiento rígido a la torsión Tipo: __ Tipo: _ 2.7 Rueda libre con carcasa seleccionada _ Horas (h) 2.8 Tiempo de servicio por día de los que _____(h) son en arrastre de los que _____(h) son en arrastre de los que _____(h) son en vacío ____(h) son en vacío 3. Condiciones de montaje 3.2 Otros (como accesibilidad, generación de polvo y otras influencias ambientales que 3.1 Temperatura ambiente en la rueda libre: pudieran ser importantes): de _____°C a _____°C 4. Cantidades previstas _ Uds. (pedido único) Uds./mes _____ Uds./año

5. Anexos

RINGSPANN GmbH

Especificaciones

☐ Hoja de datos

☐ Croquis/plano

Cuestionario para la selección de las ruedas libres con carcasa RINGSPANN FCBM

Rogamos fotocopie esta página o utilice el documento en PDF de nuestra página web. Empresa: Fecha: Dirección: Nº consulta: Teléfono: Nombre compl.: Fax: Dpto.: E-mail: 1. Accionamiento principal Número de motores principales **□**1 **□**2 Potencia de los motores principales (2) _____ min⁻¹ Velocidad de cada motor Ratio de reducción - Accionamientos principales 2. Accionamiento auxiliar (accionamiento de emergencia) Número de accionamientos auxiliares **□**1 **□**2 Potencia de los motores auxiliares (1) _____ kW (2) _____ min⁻¹ Velocidad de cada motor (1) _____ min⁻¹ Ratio de reducción - Accionamientos auxiliares Tipo de unidad de los accionamientos auxiliares Motor eléctrico ■ Motor diesel 3. Ratio de la circunferencia del engranaje y piñón 4. Tensión a suministrar al freno multidisco con liberación electromagnética □ 230 VAC +/- 10% (207-253 V) a 50 Hz □ 400 VAC +/- 10% (360-440 V) a 50 Hz □ 115 VAC +/- 10% (103-126 V) a 60 Hz _____ VAC / ☐ Voltaje especial _____ Hz o _____ VDC 5. Dirección de rotación Dirección de rotación en arrastre, visto (1) FCBM Sentido de giro libre: (2) FCBM Sentido de giro libre: desde X Antihorario Antihorario Horario Horario 6. Posición del freno multidisco de liberación electromagnética, visto desde X (1) FCBM Lado de montaje del freno multidisco de liberación electromagnética: ☐ derecha izquierda (2) FCBM Lado de montaje del freno multidisco de liberación electromagnética: derecha ☐ izquierda 7. Cantidades previstas ____ Uds. (pedido único) _ Uds./mes Uds./año 8. Anexos Especificaciones ☐ Hoja de datos ☐ Croquis/plano

RINGSPANN GmbH

RINGSPANN®

Alemania

RINGSPANN GmbH

Schaberweg 30-38, 61348 Bad Homburg, Alemania +49 6172 275 0 info@ringspann.de • www.ringspann.de

RINGSPANN RCS GmbH

Hans-Mess-Straße 7, 61440 Oberursel, Alemania +49 6172 67 68 50 info@ringspann-rcs.de • www.ringspann-rcs.de

Francia

SIAM - RINGSPANN S.A.

23 rue Saint-Simon, 69009 Lyon, Francia +33 4 7883 5901 info@siam-ringspann.fr • www.ringspann.fr

Gran Bretaña, Irlanda

RINGSPANN (U.K.) LTD.

3, Napier Road, Bedford MK41 0QS, Gran Bretaña +44 12 34 34 25 11 info@ringspann.co.uk • www.ringspann.co.uk

Italia

RINGSPANN Italia S.r.l.

V.le A. De Gasperi, 31, 20020 Lainate (MI), Italia +39 02 93 57 12 97 info@ringspann.it • www.ringspann.it

Países Bajos, Bélgica, Luxemburgo

RINGSPANN Benelux B.V.

Nieuwenkampsmaten 6-15, 7472 De Goor, Países Bajos • +31 547 2613 55 info@ringspann.nl • www.ringspann.nl

Austria, Hungría, Eslovenia

RINGSPANN Austria GmbH

Kleegasse 9, 2624 Breitenau, Austria +43 26 35 624 46 info@ringspann.at • www.ringspann.at

Polonia

Radius-Radpol Wiecheć Sp.J. ul. Kolejowa 16 b, 60-185 Skórzewo, Polonia +48 61 814 39 28 • info@radius-radpol.com.pl www.radius-radpol.com.pl

Rumanía, Bulgaria

S.C. Divers Util Service S.R.L. Str. Fratii Golesti, B1 S8, Sc B, Parter, Pitesti, Judetul Arges, Rumanía • +4 248 22 22 37 info@rulmentipitesti.ro • www.rulmentipitesti.ro

Suecia, Finlandia, Dinamarca, Noruega, Paises Bálticos

RINGSPANN Nordic AB

Industrigatan 7, 61933 Trosa, Suecia +46 156 19098 info@ringspann.se • www.ringspann.se

Suiza

RINGSPANN AG

Sumpfstrasse 7, 6300 Zug, Suiza +41 41 748 09 00 info@ringspann.ch • www.ringspann.ch

España, Portugal

RINGSPANN IBERICA S.A.

C/Uzbina, 24-Nave E1, 01015 Vitoria, España +34 945 22 77-50 info@ringspann.es • www.ringspann.es

República Checa, Eslovaquia

Ing. Petr Schejbal Mezivrší 1444/27, 14700 Prag, República Checa +420 222 96 90 22 Petr.Schejbal@ringspann.cz • www.ringspann.com

Asia

Australia, Nueva Zelanda

Kempower Pty. Ltd. 6 Phoenix Court, Braeside 3195, Victoria, Australia +61 3 95 87 90 33 • sales@imtec-kempower.com.au www.imtec-kempower.com.au

China, Taiwán

RINGSPANN Power Transmission (Tianjin) Co., Ltd.

No. 21 Gaoyan Rd., Binhai Science and Technology Park, Binhai Hi-Tech Industrial, Development Area, Tianjin, 300458, P.R. China • +86 22 5980 31 60 info.cn@ringspann.cn • www.ringspann.cn

India, Bangladés, Nepal

RINGSPANN Power Transmission India Pvt. Ltd.

GAT No: 679/2/1, Village Kuruli, Taluka Khed, Chakan-Alandi Road, Pune - 410501, India +91 21 35 67 75 00 • info@ringspann-india.com www.ringspann-india.com

Kazajistán, Asia Central

Industrial Drive LLP 193, Furmanov Street, 050013 Almaty, Kazajistán +7 727 350 58 68

info@promprivod.kz • www.promprivod.kz

Singapur, ASEAN

RINGSPANN Oficina Arthur Low, 1 Scotts Road, #21-10 Shaw Centre, Singapur 228208 • +65 9633 6692 Arthur.Low@ringspann.com • www.ringspann.com

Corea del Sur

J & N TECH

Gangnam Teheran-lo 82 Ghil 15, 2nd Fl. #8, Seoul 06178, Corea del Sur • + 82 10 54 961 368 schinng@outlook.com • www.ringspann.com

América

Brasil

Antares Acoplamentos Ltda. Rua Evaristo de Antoni, 1222, Caxias do Sul, RS, CEP 95041-000, Brasil • +55 54 32 18 68 00 vendas@antaresacoplamentos.com.br www.antaresacoplamentos.com.br

EEUU, Canada, Mexico, Chile, Perú

RINGSPANN Corporation

10550 Anderson Place, Franklin Park, IL 60131, EEUU +1 847 678 35 81 info@ringspanncorp.com • www.ringspanncorp.com

África y Medio Oriente

Egipto

Shofree Trading Co. 218 Emtedad Ramsis 2, 2775 Nasr City, Cairo, Egipto +20 2 2081 2057 info@shofree.com • www.ringspann.com

Irán

Persia Robot Machine Co. Ltd. 4th Floor, No 71, Mansour St, Motahari Avenue, Tehran 15957, Irán • +98 21 88 70 91 58 -62 forootan@persiarobot.com • www.ringspann.com

Israel

G.G. Yarom Rolling and Conveying Ltd. 6, Hamaktesh Str., 58810 Holon, Israel +972 3 557 01 15 noam_a@gq.co.il • www.ringspann.com

Magreb, África Occidental

SIAM - RINGSPANN S.A.

23 rue Saint-Simon, 69009 Lyon, Francia +33 4 78 83 59 01 info@siam-ringspann.fr • www.ringspann.fr

Sudáfrica, Sub-Sahara

RINGSPANN Transmission Components (Pty) Ltd.

96 Plane Road Spartan, Kempton Park, P.O. Box 8111 Edenglen 1613, Sudáfrica +27 11 394 18 30 info@ringspann.co.za • www.ringspann.co.za